Presence of foreign materials (i.e, contamination) can affect the reliability of copper (Cu) bumps when it affects the wettability of the solder and consequently weakens the joint formation of the copper to the substrate. This paper looks at a case of non-wetting of Cu bumps due to silicon contamination induced during assembly processing. In this case study, surface roughness is the main factor being altered when foreign materials contaminate the metal substrate. Sample devices were tested in a resistive open unit and a direct current failing unit, respectively. It was found that the silicon dust present on the substrate in effect "roughens" the surface, thereby decreasing the wettability between the molten solder to the metal substrate. For future studies, it is recommended that the effect of reliability stress activities on the Cu bumps with silicon contaminations be examined to evaluate the risks for possible field failures of this defect.
Coatings and thin films inherently contain several types of defects. This thesis aims to enhance the understanding of the relationship of defects on the growth, structure, stability, and properties of titanium aluminum nitride films synthesized by physical vapor deposition techniques.Heteroepitaxial cubic and wurtzite films in the Ti-Al-N system grown by reactive magnetron sputtering were studied in relation to their defect structures. The dislocation structures of heteroepitaxial TiN and Ti1-xAlxNy films were analyzed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Together with atomistic simulations, it was revealed that the presence of different dislocation types in TiN enhances the metal-metal bonds which locally weakens the directionally covalent metal-N bonds. In epitaxial cubic Ti1-xAlxN films, microstrain analysis shows that increasing N-vacancies influences the strain and compositional fluctuations in as-deposited states. During spinodal decomposition induced by annealing to high temperatures, the delay in coarsening and strain correlates with the amount of N vacancies. Detailed characterization of the decomposing domains exposed the formation of stacking faults and partial dislocations as a strainrelieving mechanism which also facilitates the known cubic-to-wurtzite transformation in Ti-Al-N.Cathodic arc deposited Ti1-xAlxN films were grown by applying a low duty cycle pulsed-substrate bias and high nitrogen pressures. This resulted into films with coarse grains and low lattice defects within them, indicating a kinetically controlled route to modify the defect structures in arc-deposited films. Applying the same technique on single crystalline TiN seed layer films kinetically stabilizes a pseudomorphic growth, allowing to form a highly textured, pseudo epitaxial wurtzite Ti1-xAlxN films by arc deposition. In combination with theoretical calculations, it was revealed that w-Ti1-xAlxN films also exhibit a miscibility gap which enables spinodal decomposition and thus age hardening when annealed. Finally, magnetron sputtered nitrogendeficient w-Ti 1-x Al x N y heteroepitaxial films were shown to exhibit a decomposition route that involves the formation of coherent intermediate vi MAX-like phases before transforming to pure c-TiN and w-AlN phases, which results to continued age hardening up to 1200C.The findings in this work increase the fundamental understanding of the role of defects in Ti-Al-N films and open new routes for defect-based engineering strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.