Contrast-enhanced US has a high likelihood of definitively classifying a renal lesion that is indeterminate by computed tomography, magnetic resonance imaging, or conventional US.
Quantitative iodine values on rsDECT discriminate between papillary RCC and complex cysts, and between papillary RCC and clear cell RCC, the former addressing an important clinical challenge particularly when an unenhanced series has not been performed. These rsDECT thresholds differ from values derived from dual-source DECT technology.
Oligometastatic prostate cancer has traditionally been defined in the literature as a limited number of metastatic lesions (either to soft tissue or bone), typically based on findings seen on CT, MRI, and skeletal scintigraphy. Although definitions have varied among research studies, many important clinical trials have documented effective treatments and prognostication in patients with oligometastatic prostate cancer. In current clinical practice, prostate-specific membrane antigen (PSMA)-PET/CT is increasingly utilized for the initial staging of high-risk patients and, in many cases, detecting metastases that would have otherwise been undetected with conventional staging imaging. Thus, patients with presumed localized and/or oligometastatic prostate cancer undergo stage migration based on more novel molecular imaging. As a result, it is challenging to apply the data from the era before widespread PET utilization to current clinical practice and to relate current trials using PSMA-PET/CT for disease detection to older studies using conventional staging imaging alone. This manuscript aims to review the definition of oligometastatic prostate cancer, summarize important studies utilizing both PSMA-PET/CT and conventional anatomic imaging, discuss the concept of stage migration, and discuss current problems and challenges with the current definition of oligometastatic disease.
Although relatively rare in the United States, penile squamous cell carcinoma is encountered worldwide at a higher rate. Initial diagnosis is often made on clinical exam, as almost all of these lesions are externally visible and amenable to biopsy. In distinction to other types of malignancies, penile cancer relies heavily on clinical nodal staging of the inguinal lymph node chains. As with all cancers, imaging plays a role in the initial staging, restaging, and surveillance of these patients. The aim of this manuscript is to highlight the applications, advantages, and limitations of different imaging modalities in the evaluation of penile cancer, including ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography.
Molecular imaging of prostate cancer continues to grow, with recent inclusion of several positron emission tomography (PET) radiotracers into the recent National Comprehensive Cancer Network guidelines and the US Food and Drug Administration approval of prostate-specific membrane antigen (PSMA)-targeted radiotracers. While much of the work for many of these radiotracers is focused on systemic staging and restaging in both newly diagnosed high-risk prostate cancer and biochemically recurrent disease patients, the potential role of molecular imaging for the detection of localized prostate cancer has not yet been fully established. The primary aim of this article will be to present the potential role for molecular imaging in the detection of localized prostate cancer and discuss potential advantages and disadvantages to utilization of both PET/computed tomography (CT) and PET/magnetic resonance imaging (MRI) for this clinical indication of use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.