BackgroundThe andropause is associated with declines in serum testosterone (T), loss of muscle mass (sarcopenia), and frailty. Two major interventions purported to offset sarcopenia are anabolic steroid therapies and resistance exercise training (RET). Nonetheless, the efficacy and physiological and molecular impacts of T therapy adjuvant to short‐term RET remain poorly defined.MethodsEighteen non‐hypogonadal healthy older men, 65–75 years, were assigned in a random double‐blinded fashion to receive, biweekly, either placebo (P, saline, n = 9) or T (Sustanon 250 mg, n = 9) injections over 6 week whole‐body RET (three sets of 8–10 repetitions at 80% one‐repetition maximum). Subjects underwent dual‐energy X‐ray absorptiometry, ultrasound of vastus lateralis (VL) muscle architecture, and knee extensor isometric muscle force tests; VL muscle biopsies were taken to quantify myogenic/anabolic gene expression, anabolic signalling, muscle protein synthesis (D2O), and breakdown (extrapolated).ResultsTestosterone adjuvant to RET augmented total fat‐free mass (P=0.007), legs fat‐free mass (P=0.02), and appendicular fat‐free mass (P=0.001) gains while decreasing total fat mass (P=0.02). Augmentations in VL muscle thickness, fascicle length, and quadriceps cross‐section area with RET occured to a greater extent in T (P < 0.05). Sum strength (P=0.0009) and maximal voluntary contract (e.g. knee extension at 70°) (P=0.002) increased significantly more in the T group. Mechanistically, both muscle protein synthesis rates (T: 2.13 ± 0.21%·day−1 vs. P: 1.34 ± 0.13%·day−1, P=0.0009) and absolute breakdown rates (T: 140.2 ± 15.8 g·day−1 vs. P: 90.2 ± 11.7 g·day−1, P=0.02) were elevated with T therapy, which led to higher net turnover and protein accretion in the T group (T: 8.3 ± 1.4 g·day−1 vs. P: 1.9 ± 1.2 g·day−1, P=0.004). Increases in ribosomal biogenesis (RNA:DNA ratio); mRNA expression relating to T metabolism (androgen receptor: 1.4‐fold; Srd5a1: 1.6‐fold; AKR1C3: 2.1‐fold; and HSD17β3: two‐fold); insulin‐like growth factor (IGF)‐1 signalling [IGF‐1Ea (3.5‐fold) and IGF‐1Ec (three‐fold)] and myogenic regulatory factors; and the activity of anabolic signalling (e.g. mTOR, AKT, and RPS6; P < 0.05) were all up‐regulated with T therapy. Only T up‐regulated mitochondrial citrate synthase activity (P=0.03) and transcription factor A (1.41 ± 0.2‐fold, P=0.0002), in addition to peroxisome proliferator‐activated receptor‐γ co‐activator 1‐α mRNA (1.19 ± 0.21‐fold, P=0.037).ConclusionsAdministration of T adjuvant to RET enhanced skeletal muscle mass and performance, while up‐regulating myogenic gene programming, myocellular translational efficiency and capacity, collectively resulting in higher protein turnover, and net protein accretion. T coupled with RET is an effective short‐term intervention to improve muscle mass/function in older non‐hypogonadal men.
What is the central question of this study? Is electrical pulse stimulation (EPS) an in vitro exercise model able to elicit the hypertrophy of human muscle cells? What is the main finding and its importance? The addition of a restitution period of 8 h after EPS induces the enlargement of human muscle cells, a major physiological end-point to resistance exercise. This is supported by downregulation of myostatin, a negative regulator of muscle mass, and increased phosphorylated mTOR and 4E-BP1, key factors in the growth cascade. This proof-of-concept study provides a model of physiologically mediated muscle growth, which will be the basis for future studies aiming to depict molecular events governing the hypertrophy of human muscle cells. Electrical pulse stimulation (EPS) of muscle cells has previously been used as an in vitro exercise model. The present study aimed to establish an EPS protocol promoting the hypertrophy of human muscle cells, which represents a major physiological end-point to resistance exercise in humans. We hypothesized that adding a resting period after EPS would be crucial for the occurrence of the morphological change. Myoblasts obtained from human muscle biopsies (n = 5) were differentiated into multinucleated myotubes and exposed to 8 h of EPS consisting of 2 ms pulses at 12 V, with a frequency of 1 Hz. Myotube size was assessed using immunohistochemistry immediately, 4 and 8 h after completed EPS. Gene expression and phosphorylation status of selected markers of hypertrophy were assessed using RT-PCR and Western blotting, respectively. Release of the myokine interleukin-6 in culture medium was measured using enzyme-linked immunosorbent assay. We demonstrated a significant increase (31 ± 14%; P = 0.03) in the size of myotubes when EPS was followed by an 8 h resting period, but not immediately or 4 h after completion of EPS. The response was supported by downregulation (P = 0.04) of the gene expression of myostatin, a negative regulator of muscle mass, and an increase in phosphorylated mTOR (P = 0.03) and 4E-BP1 (P = 0.01), which are important factors in the cellular growth signalling cascade. The present work demonstrates that EPS is an in vitro exercise model promoting the hypertrophy of human muscle cells, recapitulating a major physiological end-point to resistance exercise in human skeletal muscle.
Objective The Vitamin D receptor (VDR) has been positively associated with skeletal muscle mass, function and regeneration. Mechanistic studies have focused on the loss of the receptor, with in vivo whole-body knockout models demonstrating reduced myofibre size and function and impaired muscle development. To understand the mechanistic role upregulation of the VDR elicits in muscle mass/health, we studied the impact of VDR over-expression (OE) in vivo before exploring the importance of VDR expression upon muscle hypertrophy in humans. Methods Wistar rats underwent in vivo electrotransfer (IVE) to overexpress the VDR in the Tibialis anterior (TA) muscle for 10 days, before comprehensive physiological and metabolic profiling to characterise the influence of VDR-OE on muscle protein synthesis (MPS), anabolic signalling and satellite cell activity. Stable isotope tracer (D 2 O) techniques were used to assess sub-fraction protein synthesis, alongside RNA-Seq analysis. Finally, human participants underwent 20 wks of resistance exercise training, with body composition and transcriptomic analysis. Results Muscle VDR-OE yielded total protein and RNA accretion, manifesting in increased myofibre area, i.e., hypertrophy. The observed increases in MPS were associated with enhanced anabolic signalling, reflecting translational efficiency (e.g., mammalian target of rapamycin (mTOR-signalling), with no effects upon protein breakdown markers being observed. Additionally, RNA-Seq illustrated marked extracellular matrix (ECM) remodelling, while satellite cell content, markers of proliferation and associated cell-cycled related gene-sets were upregulated. Finally, induction of VDR mRNA correlated with muscle hypertrophy in humans following long-term resistance exercise type training. Conclusion VDR-OE stimulates muscle hypertrophy ostensibly via heightened protein synthesis, translational efficiency, ribosomal expansion and upregulation of ECM remodelling-related gene-sets. Furthermore, VDR expression is a robust marker of the hypertrophic response to resistance exercise in humans. The VDR is a viable target of muscle maintenance through testable Vitamin D molecules, as active molecules and analogues.
Key points Reduced vitamin D receptor (VDR) expression prompts skeletal muscle atrophy. Atrophy occurs through catabolic processes, namely the induction of autophagy, while anabolism remains unchanged. In response to VDR‐knockdown mitochondrial function and related gene‐set expression is impaired. In vitro VDR knockdown induces myogenic dysregulation occurring through impaired differentiation. These results highlight the autonomous role the VDR has within skeletal muscle mass regulation. Abstract Vitamin D deficiency is estimated to affect ∼40% of the world's population and has been associated with impaired muscle maintenance. Vitamin D exerts its actions through the vitamin D receptor (VDR), the expression of which was recently confirmed in skeletal muscle, and its down‐regulation is linked to reduced muscle mass and functional decline. To identify potential mechanisms underlying muscle atrophy, we studied the impact of VDR knockdown (KD) on mature skeletal muscle in vivo, and myogenic regulation in vitro in C2C12 cells. Male Wistar rats underwent in vivo electrotransfer (IVE) to knock down the VDR in hind‐limb tibialis anterior (TA) muscle for 10 days. Comprehensive metabolic and physiological analysis was undertaken to define the influence loss of the VDR on muscle fibre composition, protein synthesis, anabolic and catabolic signalling, mitochondrial phenotype and gene expression. Finally, in vitro lentiviral transfection was used to induce sustained VDR‐KD in C2C12 cells to analyse myogenic regulation. Muscle VDR‐KD elicited atrophy through a reduction in total protein content, resulting in lower myofibre area. Activation of autophagic processes was observed, with no effect upon muscle protein synthesis or anabolic signalling. Furthermore, RNA‐sequencing analysis identified systematic down‐regulation of multiple mitochondrial respiration‐related protein and genesets. Finally, in vitro VDR‐knockdown impaired myogenesis (cell cycling, differentiation and myotube formation). Together, these data indicate a fundamental regulatory role of the VDR in the regulation of myogenesis and muscle mass, whereby it acts to maintain muscle mitochondrial function and limit autophagy.
Background & aims: The skeletal muscle anabolic effects of n-3 polyunsaturated fatty acids (n-3 PUFA) appear favoured towards women; a property that could be exploited in older women who typically exhibit poor muscle growth responses to resistance exercise training (RET). Here we sought to generate novel insights into the efficacy and mechanisms of n-3 PUFA alongside short-term RET in older women. Methods: We recruited 16 healthy older women (Placebo n ¼ 8 (PLA): 67±1y, n-3 PUFA n ¼ 8: 64±1y) to a randomised double-blind placebo-controlled trial (n-3 PUFA; 3680 mg/day versus PLA) of 6 weeks fully-supervised progressive unilateral RET (i.e. 6 Â 8 reps, 75% 1-RM, 3/wk À1 ). Strength was assessed by knee extensor 1-RM and isokinetic dynamometry ~every 10 d. Thigh fat free mass (TFFM) was measured by DXA at 0/3/6 weeks. Bilateral vastus lateralis (VL) biopsies at 0/2/4/6 weeks with deuterium oxide (D 2 O) dosing were used to determine MPS responses for 0e2 and 4e6 weeks. Further, fibre cross sectional area (CSA), myonuclei number and satellite cell (SC) number were assessed, alongside muscle anabolic/catabolic signalling via immunoblotting. Results: RET increased 1-RM equally in the trained leg of both groups (þ23 ± 5% n-3 PUFA vs. þ25 ± 5% PLA (both P < 0.01)) with no significant increase in maximum voluntary contraction (MVC) (þ10 ± 6% n-3 PUFA vs. þ13 ± 5% PLA). Only the n-3 PUFA group increased TFFM (3774 ± 158 g to 3961 ± 151 g n-3 PUFA (P < 0.05) vs. 3406 ± 201 g to 3561 ± 170 PLA) and type II fibre CSA (3097 ± 339 mm 2 to 4329 ± 264 mm 2 n-3 PUFA (P < 0.05) vs. 2520 ± 316 mm 2 to 3467 ± 303 mm 2 in PL) with RET. Myonuclei number increased equally in n-3 PUFA and PLA in both type I and type II fibres, with no change in SC number. N-3 PUFA had no added benefit on muscle protein synthesis (MPS), however, during weeks 4e6 of RET, absolute synthesis rates (ASR) displayed a trend to increase with n-3 PUFA only (5.6 ± 0.3 g d À1 to 7.1 ± 0.5 g d À1 n-3 PUFA (P ¼ 0.09) vs. 5.5 ± 0.5 g d À1 to 6.5 ± 0.5 g d À1 PLA). Further, the n-3 PUFA group displayed greater 4EBP1 activation after acute RE at 6 weeks. Conclusion: n3-PUFA enhanced RET gains in muscle mass through type II fibre hypertrophy, with data suggesting a role for MPS rather than via SC recruitment. As such, the present study adds to a literature base illustrating the apparent enhancement of muscle hypertrophy with RET in older women fed adjuvant n3-PUFA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.