Internal fixation of comminuted unstable fractures of the severely osteoporotic proximal femur is sometimes supplemented with polymethyl-methacrylate (PMMA). We here report an in vitro biomechanical evaluation of a biodegradable particulate composite that might be used for similar purposes. The composite includes a matrix phase consisting of a hydrolyzable prepolymer [polypropylene fumarate (PPF)] cross-linked with methacrylate monomer, and a particulate phase consisting of tricalcium phosphate and calcium carbonate. We implanted dynamic hip screws in 22 cadaveric proximal femora and measured the yield load for an oblique force applied to the femoral head. The hip screws were then reinforced with either PMMA or the PPF composite and tested again. On the basis of analysis of variance, the average increases in yield load for PMMA and PPF reinforcement of 1,750 and 1,130 N were statistically significant (p less than 0.00005), suggesting that both materials enhance congruence between implant and bone and thereby increase the projected load-bearing area of the implant. The increase in yield force with PMMA was slightly higher than the increase with PPF (p less than 0.05), but both values after reinforcement were close (3,790 +/- 561 N for PMMA vs. 3,240 +/- 669 N for PPF). If we can demonstrate that appropriate rates of degradation, bony ingrowth, and static and fatigue properties can be achieved in vivo with this system, our data suggest that this PPF composite may have potential as an adjunct to the internal fixation of unstable fractures of the osteoporotic hip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.