Background: Human life without sperm is not possible. Therefore, it is alarming that the fertilizing ability of human spermatozoa is continuously decreasing. The reasons for that are widely unknown, but there is hope that metabolomics-based investigations may be able to contribute to overcoming this problem. This review summarizes the attempts made so far. Methods: We will discuss liquid chromatography–mass spectrometry (LC-MS), gas chromatography (GC), infrared (IR) and Raman as well as nuclear magnetic resonance (NMR) spectroscopy. Almost all available studies apply one of these methods. Results: Depending on the methodology used, different compounds can be detected, which is (in combination with sophisticated methods of bioinformatics) helpful to estimate the state of the sperm. Often, but not in all cases, there is a correlation with clinical parameters such as the sperm mobility. Conclusions: LC-MS detects the highest number of metabolites and can be considered as the method of choice. Unfortunately, the reproducibility of some studies is poor, and, thus, further improvements of the study designs are needed to overcome this problem. Additionally, a stronger focus on the biochemical consequences of the altered metabolite concentrations is also required.
Currently, spermiogram analysis is the most relevant method used to clarify the potential infertility of a couple. However, in some cases, the reasons for infertility remain obscure. Smoking is among the factors that have been described to adversely affect male fertility. Smoking increases oxidative stress and thus promotes various pathological processes. Comparative studies, particularly those on metabolomic changes in sperm and seminal plasma caused by smoking, have not yet been published. Thus, the present pilot study aimed at the mass spectrometric characterization of the metabolomes of specimens from both smoking and nonsmoking subjects and the comparison of the evaluated data in terms of sperm apoptosis and spermiogram parameters. The results provided evidence that the conventional spermiogram is not altered in smokers compared to nonsmokers. However, a more careful investigation of sperm cells by metabolomic profiling reveals profound effects of smoking on sperm: first, nitrogen oxide synthase, a marker of oxidative stress, is activated. Second, the uptake of fatty acids into sperm mitochondria is reduced, leading to an impaired energy supply. Third, phenylalanine hydroxylation and tryptophan degradation, which are both indications of altered tetrahydrobiopterin biosynthesis, are reduced. Moreover, flow cytometry approaches indicated increased sperm caspase-3 activity, a sign of apoptosis. The present study clearly shows the negative effects of smoking on semen quality. Especially for idiopathic cases, metabolomic profiling can help to shed light on male sub- or infertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.