Summary The effect of rider weight on equine welfare and performance requires further investigation. The objective of this prospective, cross‐over, randomised trial was to assess gait and behavioural responses of horses to riders of similar ability, but different bodyweights. Six nonlame horses in regular work were ridden by each of four riders: Light (L), Moderate (M), Heavy (H) and Very Heavy (VH). Saddle fit was assessed subjectively throughout the study. Each horse was ridden twice by riders L and M, and once by rider H. Rider VH rode five horses once and one twice. Each horse‐rider combination undertook a standardised, 30‐min ‘dressage‐test' which was abandoned if we observed lameness grade ≥ 3/8 in one limb, grade ≥ 2/8 in ≥ 2 limbs, or ≥ 10/24 behavioural markers of pain. Horses were reassessed in hand 45–60 min after any abandonment. Mean rider bodyweights, body mass index (BMI) values and rider:horse bodyweight percentages for the L, M, H and VH riders were respectively: 60.8, 77.8, 91.0, 142.1 kg; 23.2, 28.0, 26.3, 46.9 kg/m2; 10.0–11.7%, 12.8–15.0%, 15.3–17.9%, 23.6–27.5%. All 13 H and VH rider tests (lameness, n = 12; behaviour, n = 1) and one of 12 M rider tests (lameness) were abandoned. Lameness was confirmed using inertial measurement unit data. All horses trotted sound after test abandonment and completed the study moving well when ridden. Limitations of the study were saddle fit was not ideal in all horse‐rider combinations and abandonment criteria were subjective. The conclusions and clinical relevance of the study were that large riders can induce temporary lameness and behaviours consistent with musculoskeletal pain. This may relate to rider bodyweight and/or weight distribution. Riders M and H had similar BMI but markedly different test abandonment rates, therefore bodyweight is likely to be more relevant than BMI. Further work is required to determine if horse fitness, adaptation to heavier weights and better saddle fit for heavier/taller riders will increase horses' weight‐carrying capacity.
The purpose was to investigate whether differences in equine hoof shape, which are inferred to alter foot function, are accompanied by differences in morphology of the laminar junction. Ten fore feet from adult horses were segregated into normal and low-angle groups, depending on the dorsal angle of the hoof wall. Twenty measurements of external hoof shape and four of the enclosed distal phalanx were tested for differences between groups, and for intragroup correlations. Three measurements of laminar morphology (spacing, orientation and degree of bend) were recorded for samples of up to 50 primary epidermal laminae at each of 20 sample sites. Sites were distributed over the foot in 5 circumferential columns and 4 proximodistal rows. Intergroup differences were investigated, as were correlations among sample sites of the laminar variables with the shape measurements. Results show differences in hoof shape between groups (but not bone shape) and laminar morphology. Six shape measurements are significantly different between groups: dorsal angle, medial and lateral angles, lateral sole width, solar circumference, and dorsal length. In the normal group, shape measurements show patterns of correlation among regions of the hoof, and between hoof and bone measurements. In the low-angle group, shape correlations occur largely within one region of the hoof (the heels) and in the bone measurements. Laminar spacing tends to be nonsignificantly greater in the low-angle group, while variances for laminar spacing and orientation are significantly greater in this group. Laminar spacing correlates with bone width and coronary circumference (CC) of the hoof in the normal group, but only with CC in the low-angle group. When taken as a whole, and interpreted in light of a model of foot mechanical function, the results appear to indicate a deterioration in structural coherence of the foot in the low-angle group.
Circumferential and proximodistal variations in the morphology of the primary epidermal laminae of six neonatal and five adult equine feet were documented. Three parameters were quantified: interlaminar spacing, the orientation of the laminae with respect to the overlying wall, and any angulation within the laminae themselves (‘internal angle’). In adult feet, the laminae were most closely spaced at the dorsum, the spacing increasing gradually towards the heels. In foals there was a non-significant trend for the dorsal laminae to be more widely spaced than those in more caudal parts of the foot. In both age groups, the dorsal laminae were almost straight (mean divergence from linearity at all sites 2°), and were oriented at approximately 90° to the tangent to the overlying wall (mean orientation for all sites 91°). At the quarters, the laminae were in general oriented caudally relative to the tangential position from their epidermal to their dermal ends (mean orientation of >90° at 12 of 16 sampling sites, where an orientation of >90° defines a ‘caudally directed’ orientation) and, in general, had a bend within their length (mean absolute value of internal angle for all sites 9°). At the heels there was greater variability in the data for both laminar orientation and internal angle. Overall, the foal feet showed greater mediolateral symmetry and less proximodistal variation than did the adult feet. In both age groups, rapid spatial changes in laminar morphology were closely associated with the position of the margins of the third phalanx.
The international governing body for equestrian sports, the Fédération Equestre Internationale (FEI), states that the welfare of the horse must be paramount and never subordinated to competitive or commercial influences. However, there is growing unease about welfare issues from both within and outside the sport. The aim of this study was to understand stakeholder perceptions of current welfare issues within equestrian sport, determine whether there is scope for change, and explore attitudes towards welfare assessment. Participants (n = 48) from equestrian sport (n = 38) and animal welfare research (n = 10) attended a workshop that included welfare-related presentations and focus group sessions. The focus group sessions were recorded, anonymised and analysed using thematic analysis. Conflict between the demands of competition and the needs of the horse was identified as a key welfare challenge. Although the physical health of equine athletes is closely monitored, horses’ psychological needs are sometimes overlooked. Participants recognised that improving competition practices may not be as impactful as improving the general management and training of horses. The term “quality of life” was considered preferable to “welfare”, which had negative connotations. Participants appreciated the idea of incorporating formal welfare assessments into their training and competition plans but stated that existing tools are rarely used and are not deemed feasible for real-life conditions.
During normal weight-bearing and locomotion, the equine hoof wall deforms in a consistent pattern; the proximal dorsal wall rotates caudo-ventrally about the distal dorsal border and there is latero-medial flaring posteriorly. The aim of this study is to examine whether there are regional differences in the modulus of elasticity of hoof wall material and whether such differences correlate with the pattern of deformation which occurs in vivo. The modulus of elasticity of equine hoof wall was determined in tension and compression for samples from six forefeet. Samples were tested at the mid-point of the inner and outer halves of the wall thickness at two positions along the proximo-distal axis of the dorsal wall, and from the mid-point of its thickness at the lateral and medial quarters. Test samples were oriented both parallel and perpendicular to the tubules that characterise the microstructure of the wall. The colour of each sample was noted, and the moisture content measured. The range in the mean modulus of elasticity for all samples and tests was 460-1049 MPa, the dorsal outer wall having the highest values, the dorsal inner wall the lowest, and the quarters having intermediate values. The mean value obtained for the quarters was similar to the average of the values for the dorsal inner and outer walls. At all sites, the modulus of elasticity was marginally higher in compression than in tension, possibly owing to microstructural defects. The difference in stiffness between the outer wall and the inner wall was inversely related to moisture content. The difference in stiffness between the dorsal outer and inner walls demonstrates that the equine hoof wall has a comparatively rigid external capsule with a lining of lower stiffness. This arrangement presumably provides some stress protection to the internally adjacent living tissues. The similarity in stiffness between the samples from the quarters and the mean of the two dorsal wall sites suggests that the wall at the quarters has a similar change in stiffness across its thickness as the dorsal wall. However, the reduced thickness of the wall at the quarters compared with the dorsal wall means that, functionally, the quarters are more flexible than the dorsal wall. This will facilitate the flaring of the lateral and medial walls which occurs during weight-bearing. Anisotropy was evident only in tensile tests of the dorsal wall samples. Contrary to popular assertions that white hooves are mechanically inferior, horn pigmentation had no detectable effect on stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.