The literature, and previously unpublished data from the authors’ laboratories, shows that the δ13C of organic matter in marine macroalgae and seagrasses collected from the natural environment ranges from –3 to –35‰. While some marine macroalgae have δ13C values ranging over more than 10‰ within the thallus of an individual (some brown macroalgae), in other cases the range within a species collected over a very wide geographical range is only 5‰ (e.g. the red alga Plocamium cartilagineum which has values between –30 and –35‰). The organisms with very negative δ13C (lower than –30‰) are mainly subtidal red algae, with some intertidal red algae and a few green algae; those with very positive δ13C values (higher than –10‰) are mainly green macroalgae and seagrasses, with some red and brown macroalgae. The δ13C value correlates primarily with taxonomy and secondarily with ecology. None of the organisms with δ13C values lower than –30‰ have pyrenoids. Previous work showed a good correlation between δ13C values lower than –30‰ and the lack of CO2 concentrating mechanisms for several species of marine red algae. The extent to which the low δ13C values are confined to organisms with diffusive CO2 entry is discussed. Diffusive CO2 entry could also occur in organisms with higher δ13C values if diffusive conductance was relatively low. The photosynthesis of organisms with δ13C values more positive than –10‰ (i.e. more positive than the δ13C of CO2 in seawater) must involve HCO3- use.
The lowest photon flux density of photosynthetically active radiation at which O2-evolving marine photolithotrophs appear to be able to grow is some 10 nmol photon m−2 s−1, while marine non-O2-evolvers can grow at 4 nmol photon m−2 s−1, in both cases with the photon flux density averaged over the 24 hour L:D cycle. Constraints on the ability to grow at very low fluxes of photosynthetically active radiation fall into three categories. Category one includes essential processes whose efficiency is independent of the rate of energy input, but whose catalysts show phylogenetic variation leading to different energy costs for a given process in different taxa, e.g. light-harvesting complexes, RUBISCO and probably in the sensitivity of PsII to photodamage. The second category comprises essential processes whose efficiency decreases with decreasing energy input rate as a result of back-reactions independent of the energy input rate, e.g. charge recombination following charge separation by PsII and short-circuit H+ fluxes across the thylakoid membrane which decrease the fraction of pumped H+ which can be used in adenosine diphosphate phosphorylation. Category two also includes that component of protein turnover which cannot be related to replacement of polypeptides which were incorrectly assembled following uncorrected errors of transcription or translation, or which were damaged by processes whose rate increases with increasing energy input rate such as photodamage to PsII. The third category includes only O2-dependent damage to the D1 protein of PsII whose rate increases with a decreasing incident flux of photosynthetically active radiation. Processes in categories two and three are most likely to impose the lower limit on the photon flux density which can support photolithotrophic growth. The available literature, mainly on organisms which are not adapted to growth at very low photon flux densities, suggests that three major limitations (charge recombination in PsII, H+ leakage and slippage, and protein turnover) can individually impose lower limits in excess of 20 nmol photon m−2 s−1 on photolithotrophic growth. Furthermore, these three limitations are interactive, so that considering all three processes acting in series leads to an even higher predicted lower photon flux density limit for photolithotrophic growth.
We grew a non-bicarbonate using red seaweed, Lomentaria articulata (Huds.) Lyngb . Growth in terms of biomass appeared to be limited by conversion of photosynthate to new biomass rather than simply by diffusion of CO 2 , suggesting that non-bicarbonate-using macroalgae, such as L. articulata, may not be directly analogous to C3 higher plants in terms of their responses to changing gas composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.