Purpose: This exploratory trial investigated the effects of rigid ankle foot orthoses (AFO) with an optimally cast Angle of the Ankle in the AFO (AAAFO) on the gait of children with Cerebral Palsy (CP), and whether tuning of the AFO - Footwear Combination (AFO-FC) further affected gait. Methods: Eight children with CP underwent gait analysis and tuning of their AFO-FCs using a 3-D motion analysis system. Comparisons were carried out for selected gait parameters between three conditions - barefoot, non-tuned AFO-FC and tuned AFO-FC. Results: In comparison to barefoot gait, walking with a non-tuned AFO-FC produced significant (p < 0.05) improvements in several key gait parameters. Compared to the non-tuned AFO-FC, on average a tuned AFO-FC produced a significant reduction in peak knee extension and knee ROM during gait. However, when examined as case studies, it was observed that the type of gait pattern demonstrated while wearing a non-tuned AFO-FC affected the outcomes of tuning. Conclusions: The findings of the current study indicate the potential benefits of using rigid AFO-FC with optimal AAAFO and tuning of AFO-FCs. This study emphasises the need for categorising children with CP based on their gait patterns when investigating the effects of interventions such as AFOs. Implications for Rehabilitation Rigid ankle foot orthoses (AFO) cast at an optimal angle to accommodate the length of gastrocnemius muscle may positively influence walking in children with Cerebral Palsy (CP). Tuning of the AFO-Footwear Combination (AFO-FC) has potential benefits to the walking of children with CP, depending on their gait abnormalities. When investigating the effects of interventions such as AFOs, it is important to categorise children with CP based on their gait abnormalities.
The findings of this study clearly indicate the potential clinical utility of tuning using wedges to correct knee hyperextension during the stance phase in children with cerebral palsy. However, observations support the need for an adequately powered study to assess the long-term effects of tuning on gait parameters, activity level and quality of life.
The effects of tuning the AFO footwear combination (AFOFC) for an adult with post-stroke hemiplegia were investigated. Gait analysis and tuning were carried out using a Vicon 3D motion analysis system and two force plates. Tuning of the AFOFC was accomplished by gradually modifying its design over a number of gait trials, to achieve optimal (i.e., as close as possible to normal, within the capability of the patient) knee kinematics and alignment of the Ground Reaction Force vector (GRF) relative to the knee joint. Heel wedges and a stiff rocker were used to tune mid-stance and terminal stance, respectively. Temporal-spatial parameters and selected kinetic and kinematic variables were compared between the non-tuned AFOFC, the tuned AFOFC immediately after tuning, and the tuned AFOFC after three months. There were several changes after three months compared to the non-tuned AFOFC, including improvement in stride length and a reduction in knee hyperextension. A subjective reduction in knee pain and improvement in function were also reported. The feasibility and the lack of objective evidence of tuning AFOFCs as a part of a clinical service need to be addressed in future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.