Lung cancer is currently the most frequent cause of cancer death in North America. Hepatocyte growth factor (HGF) and its receptor Met are frequently over-expressed in non-small-cell lung carcinomas (NSCLC), but their potential role in tumor progression is not clearly known. To assess the role of HGF/Met signaling in lung carcinomas, we have examined the expression, activation status, and function of Met in NSCLC cell lines (n = 7), established from primary tumors or pleural fluids of cancer patients. We observed Met expression in three NSCLC cell lines, two of which exhibited constitutive tyrosine-phosphorylation of Met, and Met kinase activity. In addition, the observed constitutive activation of Met was sustained under anchorage-independent conditions, and correlated with phosphatidyl inositol 3-kinase-dependent cell survival. Immunoreactive HGF-like protein was secreted by two Met-positive and two Met-negative NSCLC cell lines. However HGF activity, as determined by the ability to induce cell scattering and tyrosine-phosphorylation of Met in reporter cell lines, was detected in conditioned medium from only one Met-negative NSCLC cell line: none of the conditioned media from Met-expressing NSCLC cell lines showed detectable HGF activity. Thus, constitutive activation of Met in NSCLC cell lines may occur at least in part through intracrine, or HGF-independent mechanisms. Interestingly, additional paracrine stimulation with exogenous recombinant HGF was required for DNA synthesis and correlated with increased activation of ERK1/2 in all Met-positive NSCLC cell lines, regardless of the basal activation status of Met. These findings indicate that a medium level of constitutive activation of Met occurs in some NSCLC cell lines, and correlates with survival of detached carcinoma cells; whereas additional paracrine stimulation by recombinant HGF is required for DNA synthesis. Thus constitutive and paracrine activation of Met may provide complementary signals that promote survival and proliferation, respectively, during tumor progression of NSCLC.
Human apolipoprotein(a) kringle IV type 10 [apo(a) KIV(10)] contains a strong lysine-binding site (LBS) that mediates the interaction of Lp(a) with biological substrates such as fibrin. Mutations in the KIV(10) LBS have been reported in both the rhesus monkey and chimpanzee, and have been proposed to explain the lack of ability of the corresponding Lp(a) species to bind to lysine and fibrin. To further the comparative analyses with other primate species, we sequenced a segment of baboon liver apo(a) cDNA spanning KIV(9) through the protease domain. Like rhesus monkey apo(a), baboon apo(a) lacks a kringle V (KV)-like domain. Interestingly, we found that the baboon apo(a) KIV(10) sequence contains all of the canonical LBS residues. We sequenced the apo(a) KIV(10) sequence from an additional 10 unrelated baboons; 17 of 20 alleles encoded Trp at position 70, whereas only two alleles encoded Arg at this position and thus a defective LBS. Despite the apparent presence of a functional KIV(10) LBS in most of the baboons, none of the Lp(a) in the plasma of the corresponding baboons bound specifically to lysine-Sepharose (agarose) even upon partial purification. Moreover, baboon Lp(a) bound very poorly to plasmin-modified fibrinogen. Expression of baboon and human KIV(10) in bacteria allowed us to verify that these domains bind comparably to lysine and lysine analogues. We conclude that presentation of KIV(10) in the context of apo(a) lacking KV may interfere with the ability of KIV(10) to bind to substrates such as fibrin; this paradigm may also be present in other non-human primates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.