Members of the ezrin-radixin-moesin (ERM) protein family serve as regulated microfilament-membrane crosslinking proteins that, upon activation, bind the scaffolding protein ERM-phosphoprotein of 50 kDa (EBP50). Here we report a 3.5 Å resolution diffraction analysis of a complex between the active moesin N-terminal FERM domain and a 38 residue peptide from the C terminus of EBP50. This crystallographic result, combined with sequence and structural comparisons, suggests that the C-terminal 11 residues of EBP50 binds as an α-helix at the same site occupied in the dormant monomer by the last 11 residues of the inhibitory moesin C-terminal tail. Biochemical support for this interpretation derives from in vitro studies showing that appropriate mutations in both the EBP50 tail peptide and the FERM domain reduce binding, and that a peptide representing just the C-terminal 14 residues of EBP50 also binds to moesin. Combined with the recent identification of the I-CAM-2 binding site on the ERM FERM domain (Hamada, K., Shimizu, T., Yonemura, S., Tsukita, S., and Hakoshima, T. (2003) EMBO J. 22, 502-514), this study reveals that the FERM domain contains two distinct binding sites for membrane-associated proteins. The contribution of each ligand to ERM function can now be dissected by making structure-based mutations that specifically affect the binding of each ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.