Motivation Data-independent acquisition mass spectrometry allows for comprehensive peptide detection and relative quantification than standard data-dependent approaches. While less prone to missing values, these still exist. Current approaches for handling the so-called missingness have challenges. We hypothesized that non-random missingness is a useful biological measure and demonstrate the importance of analysing missingness for proteomic discovery within a longitudinal study of disease activity. Results The magnitude of missingness did not correlate with mean peptide concentration. The magnitude of missingness for each protein strongly correlated between collection time points (baseline, 3 months, 6 months; R = 0.95–0.97, confidence interval = 0.94–0.97) indicating little time-dependent effect. This allowed for the identification of proteins with outlier levels of missingness that differentiate between the patient groups characterized by different patterns of disease activity. The association of these proteins with disease activity was confirmed by machine learning techniques. Our novel approach complements analyses on complete observations and other missing value strategies in biomarker prediction of disease activity. Supplementary information Supplementary data are available at Bioinformatics online.
Matrix metalloproteinase (MMP) inhibitors, candidate therapeutic agents for a number of diseases, are known to be associated with acute fibrosis-type adverse effects in a number of species, including humans. The broad-spectrum MMP inhibitor, AZM551248, has previously been shown to cause these effects in the dog. Changes were characterized by the abnormal and extensive proliferation of fibroblasts and the deposition of collagen particularly in the subcutaneous connective tissues (subcutis) and were termed fibrodysplasia (FD). We performed a time-course study in dogs using AZM551248 and sampled skin, subcutis, and plasma before and during the development of FD. Detailed histopathological analysis and global gene expression profiling were performed on the subcutaneous tissues. The gene expression analysis of the subcutis indicated that extracellular matrix (ECM) remodeling was initiated asymptomatically at or before the earliest time point, day 4, and this was associated with dysregulation of expression of a number of MMPs and proteolytic enzymes. At later time points, the FD became progressively more extensive and severe, and this was associated with gene expression changes characteristic of tissue fibrosis, for example those associated with procollagen synthesis and processing. We postulate that AZM551248 inhibition of MMP action within the subcutis modulates the activity of several transcription factors and this in turn upregulates expression of specific proteases which initiate ECM remodeling. Persistent MMP inhibition results in the progression of ECM remodeling, culminating in collagen deposition and overt fibrosis. Our data indicate that inhibition of MMPs 1, 2, 3, and 9 is a key early event in AZM551248-induced FD in dog subcutis.
Extracellular microRNAs (miRNAs) represent a promising new source of toxicity biomarkers that are sensitive indicators of site of tissue injury. In order to establish reliable approaches for use in biomarker validation studies, the HESI technical committee on genomics initiated a multi-site study to assess sources of variance associated with quantitating levels of cardiac injury induced miRNAs in biofluids using RT-qPCR. Samples were generated at a central site using a model of acute cardiac injury induced in male Wistar rats by 0.5 mg/kg isoproterenol. Biofluid samples were sent to 11 sites for measurement of 3 cardiac enriched miRNAs (miR-1-3p, miR-208a-3p, and miR-499-5p) and 1 miRNA abundant in blood (miR-16-5p) or urine (miR-192-5p) by absolute quantification using calibration curves of synthetic miRNAs. The samples included serum and plasma prepared from blood collected at 4 h, urine collected from 6 to 24 h, and plasma prepared from blood collected at 24 h post subcutaneous injection. A 3 parameter logistic model was utilized to fit the calibration curve data and estimate levels of miRNAs in biofluid samples by inverse prediction. Most sites observed increased circulating levels of miR-1-3p and miR-208a-3p at 4 and 24 h after isoproterenol treatment, with no difference seen between serum and plasma. The biological differences in miRNA levels and sample type dominated as sources of variance, along with outlying performance by a few sites. The standard protocol established in this study was successfully implemented across multiple sites and provides a benchmark method for further improvements in quantitative assays for circulating miRNAs.
Cyclin-dependent kinases (CDKs) are a family of kinases associated predominantly with cell cycle control, making CDK inhibitors interesting candidates for anti-cancer therapeutics. However, retinal toxicity (loss of photoreceptors) has been associated with CDK inhibitors, including the pan-CDK inhibitor AG-012896. The purpose of this research was to use a novel planar sectioning technique to determine CDK expression profiles in the ex vivo human retina with the aim of identifying isoforms responsible for CDK retinotoxicity. Four CDK isoforms (CDK11, 16, 17 and 18) were selected as a result of IC 50 data comparing neurotoxic (AG-012986 and NVP-1) and non-neurotoxic (dinaciclib and NVP-2) CDK inhibitors, with IC 50 s at CDK11 showing a clear difference between the neurotoxic and non-neurotoxic drugs. CDK11 was maximally expressed in the photoreceptor layer, whereas CDK16, 17 and 18 showed maximal expression in the inner nuclear layer. CDK5 (an isoform associated with retinal homeostasis) was maximally expressed in the retinal ganglion cell layer. Apart from CDK18, each isoform showed expression in the photoreceptor layer. The human Müller cell line MIO-M1 expressed CDK5, 11, 16 and 17 and AG-01298 (0.02-60 µM) caused a dose-dependent increase in MIO-M1 cell death. In conclusion, CDK11 appears the most likely candidate for mediation of photoreceptor toxicity. RNA profiling can be used to determine the distribution of genes of interest in relation to retinal toxicity in the human retina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.