Overweight and obese patients with osteoarthritis (OA) experience more OA pain and disability than patients who are not overweight. This study examined the long-term efficacy of a combined pain coping skills training (PCST) and lifestyle behavioral weight management (BWM) intervention in overweight and obese OA patients. Patients (N=232) were randomized to a 6-month program of: 1) PCST + BWM; 2) PCST-only; 3) BWM-only; or 4) standard care control. Assessments of pain, physical disability (Arthritis Impact Measurement Scales [AIMS] physical disability, stiffness, activity, and gait), psychological disability (AIMS psychological disability, pain catastrophizing, arthritis self-efficacy, weight self-efficacy), and body weight were collected at four time points (pretreatment, post-treatment, and 6 months and 12 months after the completion of treatment). Patients randomized to PCST+ BWM demonstrated significantly better treatment outcomes (average of all three post-treatment values) in terms of pain, physical disability, stiffness, activity, weight self-efficacy, and weight when compared to the other three conditions (p’s <.05). PCST+BWM also did significantly better than at least one of the other conditions (i.e., PCST-only, BWM-only, or standard care) in terms of psychological disability, pain catastrophizing, and arthritis self-efficacy. Interventions teaching overweight and obese OA patients pain coping skills and weight management simultaneously may provide the more comprehensive long-term benefits.
Objective Through binding to folate receptor-β (FR-β), the new 99mTc–EC20 (Etarfolatide) imaging technique detects activated but not resting macrophages in vivo. The goal of this study was to investigate macrophage-related inflammation in osteoarthritis (OA). Methods Twenty-five individuals (50 knees) with symptomatic OA of at least one knee underwent SPECT-CT imaging of both knees and planar imaging of the whole body after injection of Etarfolatide. Scans and knee radiographs were scored blinded to clinical information including knee and other joint site pain severity. Measures of association controlled for age, gender, BMI and employed repeated measures to adjust for correlation between knees. Design Activated macrophages were present in the majority (76%) of knees. The quantity of knee-related macrophages was significantly associated with knee pain severity (R=0.60, p<0.0001) and radiographic knee OA severity including joint space narrowing (R=0.68, p=0.007), and osteophyte (R=0.66, p=0.001). Macrophages were also localized to joints commonly affected by OA including hand finger joints (12%), thumb bases (28%), shoulders (26%), great toes (18%) and ankles (12%). The presence of joint pain at fingers, wrists, ankles and great toes was significantly positively associated with presence of activated macrophages at these sites (p<0.0001–0.04). Conclusions This study provides the first direct in vivo evidence for macrophage involvement in OA in a substantial proportion of human knees. The association of quantity of activated macrophages with radiographic knee OA severity and joint symptoms suggests that drugs targeting macrophages and macrophage-associated inflammatory pathways may have the potential to be both symptom and structure modifying.
Objective To test the hypotheses that obesity due to a very high fat diet induces knee osteoarthritis, and that short-term wheel running exercise protects against obesity-induced knee osteoarthritis by reducing systemic inflammation and metabolic dysregulation. Methods Male C57BL/6J mice were fed either a control (13.5% kcal fat) or very high fat diet (60% kcal fat) from 12–24 wks of age. From 20–24 wks, half of the animals were housed with running wheels. Knee osteoarthritis severity was determined via histopathology, and serum cytokines were measured using a multiplex bead immunoassay and ELISAs. Body composition was quantified by dual-energy X-ray absorptiometry, and insulin resistance was assessed by glucose tolerance testing. Results A very high fat diet increased osteoarthritis scores and serum leptin, adiponectin, KC (mouse analog of IL-8), MIG (monokine induced by interferon-gamma, or CXCL9), and interleukin 1 receptor antagonist (IL-1Ra) levels in proportion to percent body fat, which increased 3-fold compared to controls. Wheel running reduced osteoarthritis progression in the medial femur of obese mice. Exercise disrupted the clustering of cytokine expression and improved glucose tolerance without reducing body fat or cytokine levels. Conclusion Obesity induced by a very high-fat diet causes osteoarthritis and systemic inflammation in proportion to body fat. Increased joint loading is not sufficient to explain the increased incidence of knee osteoarthritis with obesity as wheel running is protective rather than damaging. Exercise improves glucose tolerance and disrupts the co-expression of pro-inflammatory cytokines, suggesting that increased aerobic exercise may act independent of weight loss in promoting joint health.
IntroductionObesity is a major risk factor for the development of osteoarthritis in both weight-bearing and nonweight-bearing joints. The mechanisms by which obesity influences the structural or symptomatic features of osteoarthritis are not well understood, but may include systemic inflammation associated with increased adiposity. In this study, we examined biomechanical, neurobehavioral, inflammatory, and osteoarthritic changes in C57BL/6J mice fed a high-fat diet.MethodsFemale C57BL/6J mice were fed either a 10% kcal fat or a 45% kcal fat diet from 9 to 54 weeks of age. Longitudinal changes in musculoskeletal function and inflammation were compared with endpoint neurobehavioral and osteoarthritic disease states. Bivariate and multivariate analyses were conducted to determine independent associations with diet, percentage body fat, and knee osteoarthritis severity. We also examined healthy porcine cartilage explants treated with physiologic doses of leptin, alone or in combination with IL-1α and palmitic and oleic fatty acids, to determine the effects of leptin on cartilage extracellular matrix homeostasis.ResultsHigh susceptibility to dietary obesity was associated with increased osteoarthritic changes in the knee and impaired musculoskeletal force generation and motor function compared with controls. A high-fat diet also induced symptomatic characteristics of osteoarthritis, including hyperalgesia and anxiety-like behaviors. Controlling for the effects of diet and percentage body fat with a multivariate model revealed a significant association between knee osteoarthritis severity and serum levels of leptin, adiponectin, and IL-1α. Physiologic doses of leptin, in the presence or absence of IL-1α and fatty acids, did not substantially alter extracellular matrix homeostasis in healthy cartilage explants.ConclusionsThese results indicate that diet-induced obesity increases the risk of symptomatic features of osteoarthritis through changes in musculoskeletal function and pain-related behaviors. Furthermore, the independent association of systemic adipokine levels with knee osteoarthritis severity supports a role for adipose-associated inflammation in the molecular pathogenesis of obesity-induced osteoarthritis. Physiologic levels of leptin do not alter extracellular matrix homeostasis in healthy cartilage, suggesting that leptin may be a secondary mediator of osteoarthritis pathogenesis.
OBJECTIVE Post-traumatic arthritis is a frequent cause of disability and occurs most commonly and predictably after articular fracture. The objective of this investigation was to examine the effect of fracture severity on acute joint pathology in a novel murine model of intra-articular fracture. DESIGN Low and high energy articular fractures (n=25 per group) of the tibial plateau were created in adult male C57BL/6 mice. The acute effect of articular fracture severity on synovial inflammation, bone morphology, liberated fracture area, cartilage pathology, chondrocyte viability, and systemic cytokines and biomarkers levels was assessed at 0, 1, 3, 5, and 7 days post-fracture. RESULTS Increasing intra-articular fracture severity was associated with greater acute pathology in the synovium and bone compared to control limbs, including increased global synovitis and reduced periarticular bone density and thickness. Applied fracture energy was significantly correlated with degree of liberated cortical bone surface area, indicating greater comminution. Serum concentrations of hyaluronic acid (HA) were significantly increased one day post-fracture. While articular fracture significantly reduced chondrocyte viability, there was no relationship between fracture severity and chondrocyte viability, cartilage degeneration, or systemic levels of cytokines and biomarkers. CONCLUSIONS This study demonstrates that articular fracture is associated with a loss of chondrocyte viability and increased levels of systemic biomarkers, and that increased intra-articular fracture severity is associated with increased acute joint pathology in a variety of joint tissues, including synovial inflammation, cortical comminution, and bone morphology. Further characterization of the early events following articular fracture could aid in the treatment of post-traumatic arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.