The purpose of this study was to examine the pyruvate kinase isozymic patterns of a wide variety of tissues from rats and mice, particularly regarding hybrid isozymes. For these studies, we employed longer electrophoresis times than used in most earlier studies in order to improve the resolution of closely spaced bands. The tissue distributions of types K, L, and M pyruvate kinases were found to be approximately the same as those reported earlier for rats and other mammals. In addition, K-M hybrids could be detected in most tissues examined in relative quantities which differed from one tissue to another in the same organism, in corresponding tissues from different species, and within a single tissue during development. Hybrid isozymes containing type L subunits occur in only a few tissues of either the fetus or the adult of either animal. In earlier studies utilizing L-M hybrid isozymes produced in vitro, we showed that the kinetic properties of a given subunit are profoundly affected by the nature of its neighbors within the tetramer (Dyson and Cardenas, ['73] J. Biol. Chem., 248: 8482-8488). Based on these altered kinetic properties, we suggest that there is little need for anorganism to suppress completely the gene activity for one subunit type of pyruvate kinase during the synthesis of larger quantities of a second subunit type.
Pyruvate kinase (EC 2.7.1.40) was isolated and purified from chicken and turkey breast muscle with a purification procedure very similar to that used for the bovine skeletal muscle isozyme (Cardenas, J., Dyson, R., and strandholm, J. (1973), J. Biol. Chem. 248,6931). A study of the chemical and physical properties of the chicken enzyme revealed that it is a tetramer of four apparently identical subunits, closely resembling in this and most other respects the mamalian type 7 isozyme. The properties of these two enzymes are similar enough to permit subunits of chicken type M pyruvate kinase to combine with subunits of mammalian type L (one of the three mammalian isozymes) to form interspecies tetrameric hybrid isozymes in relative quantities that do not differ makedly from those formed when both the M and L isozymes are of mammalian origin. The similarity between the mammalian and avian type M pyruvates kinases suggests a close evolutionary relationship. Further comparisons among the three mammalian and two avian isozymes of pyruvate kinase are consistent with a common evolutionary origin, perhaps from an ancestral form of the type K isozyme, which is the only pyruvate kinase identified in mammalian and avian embryos.
Tissues of fetal and adult chickens were examined for pyruvate kinase activity. Two electrophoretically distinguishable and noninterconvertible isozymes were found. One of these, designated as type K (for kidney), is the sole pyruvate kinase in the early fetus and is found in appreciable quantities in all adult tissues except striated muscle. The second isozyme, type M, appears shortly before hatching in striated muscle and brain. These two isozymes correspond in their developmental pattern, tissue distribution, electrophoretic, immunological, and kinetic propertiesto similarly designated mammalian pyruvate kinases. However, no kinetic, immunological, or electrophoretic evidence could be found for a chicken isozyme corresponding to the mammalian type L pyruvate kinase. As the latter isozyme seems to be limited in its distribution mostly to highly differentiated gluconeogenic tissues (notable liver, kidney, and small intestine), our results support the proposition that the mammalian type L pyruvate kinase is a specilized isozyme that is present in mammals but not in birds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.