Metabolic rate depression is an important survival strategy for many animal species and a common element of hibernation, torpor, aestivation, anaerobiosis, diapause, and anhydrobiosis. Studies of the biochemical mechanisms that regulate reversible transitions to and from hypometabolic states are identifying principles of regulatory control that are conserved across phylogenetic lines and that are broadly applied to the control of multiple cell functions. One such mechanism is reversible protein phosphorylation which is now known to contribute to the regulation of fuel metabolism, to ion channel arrest, and to the suppression of protein synthesis during hypometabolism. The present review focuses on two new areas of research in hypometabolism: (1) the role of differential gene expression in supplying protein products that adjust metabolism or protect cell functions for long-term survival, and (2) the mechanisms of protein life extension in hypometabolism involving inhibitory controls of transcription, translation and protein degradation. Control of translation examines reversible phosphorylation regulation of ribosomal initiation and elongation factors, the dissociation of polysomes and storage of mRNA transcripts during hypometabolism, and control over the translation of different mRNA types by differential sequestering of mRNA into polysome versus monosome fractions. The analysis draws primarily from current research on two animal models, hibernating mammals and anoxia-tolerant molluscs, with selected examples from multiple other sources.
KENNETH B. STOREY AND JANET M. STOREY Volume 68 KENNETH B. STOREY AND JANET M. STOREY Volume 68 not the composition of the extracellular solution or the extent of cell shrinkage during freezing. For single cells in solution, his data are persuasive, for photomicrographs show the consequence of a reduced unfrozen fraction: cells trapped and deformed in minute channels of unfrozen solution.
For many animals, the best defense against harsh environmental conditions is an escape to a hypometabolic or dormant state. Facultative metabolic rate depression is the common adaptive strategy of anaerobiosis, hibernation, and estivation, as well as a number of other arrested states. By reducing metabolic rate by a factor ranging from 5 to 100 fold or more, animals gain a comparable extension of survival time that can support months or even years of dormancy. The present review focuses on the molecular control mechanisms that regulate and coordinate cellular metabolism for the transition into dormancy. These include reversible control over the activity state of enzymes via protein phosphorylation or dephosphorylation reactions, pathway regulation via the association or dissociation of particle-bound enzyme complexes, and fructose-2,6-bisphosphate regulation of the use of carbohydrate reserves for biosynthetic purposes. These mechanisms, their interactions, and the regulatory signals (e.g., second messenger molecules, pH) that coordinate them form a common molecular basis for metabolic depression in anoxia-tolerant vertebrates (goldfish, turtles) and invertebrates (marine molluscs), hibernation in small mammals, and estivation in land snails and terrestrial toads.
Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.
SUMMARY Entry into a hypometabolic state is an important survival strategy for many organisms when challenged by environmental stress, including low oxygen, cold temperatures and lack of food or water. The molecular mechanisms that regulate transitions to and from hypometabolic states, and stabilize long-term viability during dormancy, are proving to be highly conserved across phylogenic lines. A number of these mechanisms were identified and explored using anoxia-tolerant turtles as the model system, particularly from the research contributions made by Dr Peter L. Lutz in his explorations of the mechanisms of neuronal suppression in anoxic brain. Here we review some recent advances in understanding the biochemical mechanisms of metabolic arrest with a focus on ideas such as the strategies used to reorganize metabolic priorities for ATP expenditure, molecular controls that suppress cell functions (e.g. ion pumping, transcription, translation, cell cycle arrest),changes in gene expression that support hypometabolism, and enhancement of defense mechanisms (e.g. antioxidants, chaperone proteins, protease inhibitors) that stabilize macromolecules and promote long-term viability in the hypometabolic state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.