Evidence is presented for a family of mammalian homologs of ependymin, which we have termed the mammalian ependymin-related proteins (MERPs). Ependymins are secreted glycoproteins that form the major component of the cerebrospinal fluid in many teleost fish. We have cloned the entire coding region of human MERP-1 and mapped the gene to chromosome 7p14.1 by fluorescence in situ hybridization. In addition, three human MERP pseudogenes were identified on chromosomes 8, 16, and X. We have also cloned the mouse MERP-1 homolog and an additional family member, mouse MERP-2. Then, using bioinformatics, the mouse MERP-2 gene was localized to chromosome 13, and we identified the monkey MERP-1 homolog and frog ependymin-related protein (ERP). Despite relatively low amino acid sequence conservation between piscine ependymins, toad ERP, and MERPs, several amino acids (including four key cysteine residues) are strictly conserved, and the hydropathy profiles are remarkably alike, suggesting the possibilities of similar protein conformation and function. As with fish ependymins, frog ERP and MERPs contain a signal peptide typical of secreted proteins. The MERPs were found to be expressed at high levels in several hematopoietic cell lines and in nonhematopoietic tissues such as brain, heart, and skeletal muscle, as well as several malignant tissues and malignant cell lines. These findings suggest that MERPs have several potential roles in a range of cells and tissues.
Abstract:The gene for Rhotekin 2 (RTKN2) was originally identified in a promyelocytic cell line resistant to oxysterol-induced apoptosis. It is differentially expressed in freshly isolated CD4+ T-cells compared with other hematopoietic cells and is down-regulated following activation of the T-cell receptor. However, very little is known about the function of RTKN2 other than its homology to Rho-GTPase effector, rhotekin, and the possibility that they may have similar roles. Here we show that stable expression of RTKN2 in HEK cells enhanced survival in response to intrinsic apoptotic agents; 25-hydroxy cholesterol and camptothecin, but not the extrinsic agent, TNFα. Inhibitors of NF-KappaB, but not MAPK, reversed the resistance and mitochondrial pro-apoptotic genes, Bax and Bim, were down regulated. In these cells, there was no evidence of RTKN2 binding to the GTPases, RhoA or Rac2. Consistent with the role of RTKN2 in HEK over-expressing cells, suppression of RTKN2 in primary human CD4 + T-cells reduced viability and increased sensitivity to 25-OHC. The expression of the pro-apoptotic genes, Bax and Bim were increased while BCL-2 was decreased. In both cell models RTKN2 played a role in the process of intrinsic apoptosis and this was dependent on either NF-KappaB signaling or expression of downstream BCL-2 genes. As RTKN2 is a highly expressed in CD4+ T-cells it may play a role as a key signaling switch for regulation of genes involved in T-cell survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.