Abstract.Singapore has experienced periodic dengue epidemics despite maintaining a low Aedes house index. Each epidemic was associated with a switch in the predominant serotype. We investigated the temporal dynamics of dengue fever and dengue virus (DENV) and analyzed the epidemiological and entomological patterns of dengue in Singapore from 2004 to 2016. The case surveillance is based on a mandatory notification system that requires all medical practitioners to report clinically suspected and laboratory-confirmed cases. Circulating (DENV) serotypes are monitored through a virus surveillance program. Entomological surveillance involves inspections for larval breeding and monitoring of adults using gravitraps. Singapore experienced a similar epidemic pattern during 2004–2007 and 2013–2016. The pattern involved a 2-year DENV-1 epidemic occurring after a switch in the predominant serotype from DENV-2 to DENV-1, followed by a “lull” year. Thereafter, the predominant serotype switched back to DENV-2, tailed by a small-scale epidemic. Across the years, the highest incidence group was in the 25–44 years age group. The incidence rate of those aged ≥ 55 years was about half of that of the 15–24 years age group during DENV-1 predominant years. However, it was almost equal to the younger age group in DENV-2 predominant years. Types of Aedes aegypti breeding habitats remained similar. Dengue incidence was significantly higher in areas with high breeding percentage (BP) than areas with low BP (P < 0.05). In conclusion, the oscillation of DENV-1 and DENV-2, throughout the 13-year period, led to a cyclical epidemic pattern and older adults were more affected by DENV-2 than DENV-1.
BackgroundSingapore experiences endemic dengue, with 2013 being the largest outbreak year known to date, culminating in 22,170 cases. Given the limited resources available, and that vector control is the key approach for prevention in Singapore, it is important that public health professionals know where resources should be invested in. This study aims to stratify the spatial risk of dengue transmission in Singapore for effective deployment of resources.Methodology/principal findingsRandom Forest was used to predict the risk rank of dengue transmission in 1km2 grids, with dengue, population, entomological and environmental data. The predicted risk ranks are categorized and mapped to four color-coded risk groups for easy operation application. The risk maps were evaluated with dengue case and cluster data. Risk maps produced by Random Forest have high accuracy. More than 80% of the observed risk ranks fell within the 80% prediction interval. The observed and predicted risk ranks were highly correlated (≥0.86, P <0.01). Furthermore, the predicted risk levels were in excellent agreement with case density, a weighted Kappa coefficient of more than 0.80 (P <0.01). Close to 90% of the dengue clusters occur in high risk areas, and the odds of cluster forming in high risk areas were higher than in low risk areas.ConclusionsThis study demonstrates the potential of Random Forest and its strong predictive capability in stratifying the spatial risk of dengue transmission in Singapore. Dengue risk map produced using Random Forest has high accuracy, and is a good surveillance tool to guide vector control operations.
BackgroundDengue, a vector-borne infectious disease caused by the dengue virus, has spread through tropical and subtropical regions of the world. All four serotypes of dengue viruses are endemic in the equatorial city state of Singapore, and frequent localised outbreaks occur, sometimes leading to national epidemics. Vector control remains the primary and most effective measure for dengue control and prevention. The objective of this study is to develop a novel framework for producing a spatio-temporal dengue forecast at a neighbourhood level spatial resolution that can be routinely used by Singapore’s government agencies for planning of vector control for best efficiency.MethodsThe forecasting algorithm uses a mixture of purely spatial, purely temporal and spatio-temporal data to derive dynamic risk maps for dengue transmission. LASSO-based regression was used for the prediction models and separate sub-models were constructed for each forecast window. Data were divided into training and testing sets for out-of-sample validation. Neighbourhoods were categorised as high or low risk based on the forecast number of cases within the cell. The predictive accuracy of the categorisation was measured.ResultsClose concordance between the projections and the eventual incidence of dengue were observed. The average Matthew’s correlation coefficient for a classification of the upper risk decile (operational capacity) is similar to the predictive performance at the optimal 30% cut-off. The quality of the spatial predictive algorithm as a classifier shows areas under the curve at all forecast windows being above 0.75 and above 0.80 within the next month.ConclusionsSpatially resolved forecasts of geographically structured diseases like dengue can be obtained at a neighbourhood level in highly urban environments at a precision that is suitable for guiding control efforts. The same method can be adapted to other urban and even rural areas, with appropriate adjustment to the grid size and shape.Electronic supplementary materialThe online version of this article (10.1186/s12916-018-1108-5) contains supplementary material, which is available to authorized users.
BackgroundAedes aegypti is an efficient primary vector of dengue, and has a heterogeneous distribution in Singapore. Aedes albopictus, a poor vector of dengue, is native and ubiquitous on the island. Though dengue risk follows the dispersal of Ae. aegypti, the spatial distribution of the vector is often poorly characterized. Here, based on the ubiquitous presence of Ae. albopictus, we developed a novel entomological index, Ae. aegypti Breeding Percentage (BP), to demonstrate the expansion of Ae. aegypti into new territories that redefined the dengue burden map in Singapore. We also determined the thresholds of BP that render the specific area higher risk of dengue transmission.MethodsWe performed analysis of dengue fever incidence and Aedes mosquito breeding in Singapore by utilizing island-wide dengue cases and vector surveillance data from 2003 to 2013. The percentage of Ae. aegypti breeding among the total Aedes breeding habitats (BP), and the reported number of dengue fever cases in each year were calculated for each residential grid.ResultsThe BP of grids, for every year over the 11-year study period, had a consistent positive correlation with the annual case counts. Our findings suggest that the geographical expansion of Ae. aegypti to previously “non-dengue” areas have contributed substantially to the recent dengue fever incidence in Singapore. Our analysis further indicated that non-endemic areas in Singapore are likely to be at risk of dengue fever outbreaks beyond an Ae. aegypti BP of 20%.ConclusionsOur analyses indicate areas with increasing Ae. aegypti BP are likely to become more vulnerable to dengue outbreaks. We propose the usage of Ae. aegypti BP as a factor for spatial risk stratification of dengue fever in endemic countries. The Ae. aegypti BP could be recommended as an indicator for decision making in vector control efforts, and also be used to monitor the geographical expansion of Ae. aegypti.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-3281-y) contains supplementary material, which is available to authorized users.
Social distancing (SD) measures aimed at curbing the spread of SARS-CoV-2 remain an important public health intervention. Little is known about the collateral impact of reduced mobility on the risk of other communicable diseases. We used differences in dengue case counts pre- and post implementation of SD measures and exploited heterogeneity in SD treatment effects among different age groups in Singapore to identify the spillover effects of SD measures. SD policy caused an increase of over 37.2% in dengue cases from baseline. Additional measures to preemptively mitigate the risk of other communicable diseases must be considered before the implementation/reimplementation of SARS-CoV-2 SD measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.