Physical agents such as low electric voltage and current have recently gained attention for antimicrobial treatment due to their bactericidal capability. Although microampere electric current was shown to suppress the growth of bacteria, it remains unclear to what extent the microampere current damaged the bacterial membrane. Here, we investigated the membrane damage and two-way leakage caused by microampere electric current (≤ 100 μA) with a short exposure time (30 min). Based on MitoTracker staining, propidium iodide staining, filtration assays, and quantitative single-molecule localization microscopy, we observed significant membrane damage, which allowed two-way leakage of ions, small molecules, and proteins. This study paves the way to new development and antimicrobial applications of ultra-low electric voltage and current. Importance Although electric voltage and current have been studied for a long time in terms of their ability to suppress the growth of bacteria and kill bacteria, increasing interest has been aroused more recently due to the prevalence of antibiotic resistance of microbes in the past decades. Toward understanding the antimicrobial mechanism of low electric voltage and current, previous studies showed that treating bacteria with milliampere electric currents (≥ 5 mA) for ≥ 72 hours led to significant damage of the bacterial membrane, which likely resulted in leakage of cellular contents and influx of toxic substances through the damaged membrane. However, it remains unclear to what extent membrane damage and two-way (i.e. inward and outward) leakage are caused by lower (i.e., microampere) electric current in a shorter time frame. In this work, we set out to answer this question. We observed that the membrane damage was caused by microampere electric current in half an hour, which allowed two-way leakage of ions, small molecules, and proteins.
Physical agents such as low electric voltages and currents have recently gained attention for antimicrobial treatment due to their bactericidal capability. Although microampere electric currents were shown to suppress the growth of bacteria, it remains unclear to what extent the microampere currents damage bacterial membrane. Here, we investigated the membrane damage and two-way leakage caused by microampere electric currents (≤ 100 µA) in a short time (30 min). Based on MitoTracker staining, propidium iodide staining, filtration assays, and quantitative single-molecule localization microscopy, we found that microampere electric currents caused significant membrane damages and allowed two-way leakages of ions, small molecules and proteins. This study paves the way to new development and antibiotic applications of ultra-low electric voltages and currents. Statement of SignificancePrevious studies showed that treating bacteria with milliampere electric currents for 72 hours led to significant damages of the bacterial membrane. However, it remains unclear to what extent membrane damages and two-way (i.e. inward and outward) leakages are caused by lower electric currents in a shorter time. In this work, we set out to answer this question. We carried out several assays on the bacteria treated by microampere electric currents of ≤ 100 µA for 30 min, including MitoTracker staining, propidium iodide staining, filtration assays, and quantitative single-molecule localization microscopy. We found and quantified that the membrane damages were caused by microampere electric currents in half an hour and allowed two-way leakages of ions, small molecules, and proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.