E S B I O S C I E N C E . D O N O T D I S T R I B U T E .The objective of this work was to conduct an in vivo comparison of nanoparticles and microparticles as vaccine delivery systems. Poly (lactide-co-glycolide) (PLG) polymers were used to create nanoparticles size 110 nm and microparticles of size 800-900 nm. Protein antigens were then adsorbed to these particles. The efficacy of these delivery systems was tested with two protein antigens. A recombinant antigen from Neisseria meningitides type B (MenB) was administered intramuscularly (i.m.) or intraperitonealy (i.p.). An antigen from HIV-1, env glycoprotein gp140 was administered intranasally (i.n.) followed by an i.m. boost. From three studies, there were no differences between the nanoparticles and microparticles formulations. Both particles led to comparable immune responses in mice. The immune responses for MenB (serum bactericidal activity and antibody titers) were equivalent to the control of aluminum hydroxide. For the gp140, the LTK63 was necessary for high titers. Both nanoparticles and microparticles are promising delivery systems.
Sugar excipients are shown to reduce the adsorption of ribonuclease A, bovine serum albumin, and hen egg white lysozyme at the liquid-solid interface. The amount of protein adsorbed decreased as the concentration of the sugar increased. At the same sugar concentration, the ability of sugars to reduce protein adsorption followed the trend: trisaccharides > disaccharides > 6-carbon polyols > monosaccharides. This trend in adsorbed protein amounts among sugars was explained by stabilization of the protein native state in solution by the sugar excipients. The heat of solution of the amorphous saccharide was found to correlate with the amount of protein adsorbed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.