Cytochrome c is often released from mitochondria during the early stages of apoptosis, although the precise mechanisms regulating this event remain unclear. In this study, with isolated liver mitochondria, we demonstrate that cytochrome c release requires a two-step process. Because cytochrome c is present as loosely and tightly bound pools attached to the inner membrane by its association with cardiolipin, this interaction must first be disrupted to generate a soluble pool of this protein. Specifically, solubilization of cytochrome c involves a breaching of the electrostatic and͞or hydrophobic affiliations that this protein usually maintains with cardiolipin. Once cytochrome c is solubilized, permeabilization of the outer mitochondrial membrane by Bax is sufficient to allow the extrusion of this protein into the extramitochondrial environment. Neither disrupting the interaction of cytochrome c with cardiolipin, nor permeabilizing the outer membrane with Bax, alone, is sufficient to trigger this protein's release. This mechanism also extends to conditions of mitochondrial permeability transition insofar as cytochrome c release is significantly depressed when the electrostatic interaction between cytochrome c and cardiolipin remains intact. Our results indicate that the release of cytochrome c involves a distinct two-step process that is undermined when either step is compromised.
DNA damage induced by the cancer chemotherapeutic drug etoposide triggers the onset of a series of intracellular events characteristic of apoptosis. Among the early changes observed is the release of cytochrome c from mitochondria, although the mechanism responsible for this effect is unclear. We demonstrate here a role for caspase-2 in etoposide-induced cytochrome c release. In particular, Jurkat T-lymphocytes treated with an irreversible caspase-2 inhibitor, benzyloxycarbonylVal-Asp-Val-Ala-Asp-fluoromethyl ketone (z-VDVADfmk), or stably transfected with pro-caspase-2 antisense (Casp-2/AS) are refractory to cytochrome c release stimulated by etoposide. Experiments performed using a reconstituted cell-free system indicate that etoposide-induced cytochrome c release by way of caspase-2 occurs independently of cytosolic factors, suggesting that the nuclear pool of pro-caspase-2 is critical to this process. Apart from inhibiting cytochrome c release, undermining caspase-2 activity results in an attenuation of downstream events, such as pro-caspase-9 and -3 activation, phosphatidylserine exposure on the plasma membrane, and DNA fragmentation. Taken together, our data indicate that caspase-2 provides an important link between etoposide-induced DNA damage and the engagement of the mitochondrial apoptotic pathway.
Epilepsy is highly prevalent in people with intellectual disabilities. Services must be equipped with the skills and information needed to manage this condition.
Information was collected on the social networks of 500 adults with mental retardation receiving different types of residential supports. Results indicated that (a) the reported median size of participants' social networks (excluding staff) was 2 people; (b) 83% of participants were reported to have a staff member; 72%, a member of their family; 54%, another person with mental retardation; and 30%, a person who did not fit into any of these categories in their social network; (c) variation in the size and composition of participants' social networks was associated with a range of variables, including the personal characteristics of residents (age, autism, ability, and challenging behavior), the type of previous and current accommodation, staffing ratios, institutional climate, and the implementation of "active support."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.