Although treatment for diffuse large B-cell lymphoma (DLBCL) has taken some notable steps in the 2000s, there are still subgroups of patients suffering from high mortality and relapse rates.To further improve treatment outcomes, it is essential to discover new mechanisms of chemotherapy resistance and create new treatment approaches to overcome them. In the present study, we analyzed the expression of chemokines and their ligands in systemic and testicular DLBCL. From our biopsy sample set of 21 testicular and 28 systemic lymphomas, we were able to demonstrate chemokine profile differences and identify associations with clinical risk factors. High cytoplasmic CXCL13 expression had correlations with better treatment response, lower disease-related mortality, and limited stage. This study suggests that active CXCR5/CXCL13 signaling could overtake the CXCR4/CXCL12 axis, resulting in a better prognosis.
Primary central nervous system lymphoma (PCNSL) is an aggressive brain disease where lymphocytes invade along perivascular spaces of arteries and veins. The invasion markedly changes (peri)vascular structures but its effect on physiological brain pulsations has not been previously studied. Using physiological magnetic resonance encephalography (MREG BOLD ) scanning, this study aims to quantify the extent to which (peri)vascular PCNSL involvement alters the stability of physiological brain pulsations mediated by cerebral vasculature. Clinical implications and relevance were explored. In this study, 21 PCNSL patients (median 67y; 38% females) and 30 healthy age‐matched controls (median 63y; 73% females) were scanned for MREG BOLD signal during 2018–2021. Motion effects were removed. Voxel‐by‐voxel Coefficient of Variation (CV) maps of MREG BOLD signal was calculated to examine the stability of physiological brain pulsations. Group‐level differences in CV were examined using nonparametric covariate‐adjusted tests. Subject‐level CV alterations were examined against control population Z‐score maps wherein clusters of increased CV values were detected. Spatial distributions of clusters and findings from routine clinical neuroimaging were compared [contrast‐enhanced, diffusion‐weighted, fluid‐attenuated inversion recovery (FLAIR) data]. Whole‐brain mean CV was linked to short‐term mortality with 100% sensitivity and 100% specificity, as all deceased patients revealed higher values ( n = 5, median 0.055) than surviving patients ( n = 16, median 0.028) ( p < .0001). After adjusting for medication, head motion, and age, patients revealed higher CV values (group median 0.035) than healthy controls (group median 0.024) around arterial territories ( p ≤ .001). Abnormal clusters (median 1.10 × 10 5 mm 3 ) extended spatially beyond FLAIR lesions (median 0.62 × 10 5 mm 3 ) with differences in volumes ( p = .0055).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.