Various methods have been used in the past to assess the implication of oxygen free radicals (OFR) in ischemia-reperfusion-induced cardiac injury. Luminol-enhanced tert-butyl-initiated chemiluminescence in cardiac tissue reflects oxidative stress and is a very sensitive method. It was used to elucidate the role of OFR in cardiac injury due to ischemia and reperfusion. Studies were conducted on perfused isolated rabbit hearts in three groups (n = 8 in each): I, control; II, submitted to global ischemia for 30 min; III, submitted to ischemia for 30 min followed by reperfusion for 60 min. The heart tissue was then assayed for chemiluminescence (CL); content of malondialdehyde (MDA), an indicator of OFR-induced cardiac injury; and activity of tissue levels of antioxidants [superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px)]. The control values for left and right ventricular CL and malondialdehyde were 81.1 +/- 15.4 (S.E.) and 182.4 +/- 50.3 (S.E.), mv.min.mg protein-1; and 0.024 +/- 0.006 (S.E.) and 0.324 +/- 0.005 (S.E.) nmoles.mg protein-1 respectively. Ischemia produced an increase in the cardiac CL (3.3 to 4.4 fold) and MDA content (2 to 2.6 fold). Reperfusion following ischemia also produced similar changes in CL and MDA content. The control values for activity of left ventricular SOD, catalase, and GSH-Px were 45.77 +/- 1.73 (S.E.) U.mg protein-1, 5.35 +/- 0.51 (S.E.) K.10(-3).sec-1.mg protein-1, and 77.50 +/- 7.70 (S.E.) nmoles NADPH.min-1.mg protein-1 respectively. Activities of SOD and catalase decreased during ischemia but were similar to control values in ischemic-reperfused hearts. The GSH-Px activity of left ventricle was unaffected by ischemia, and ischemia-reperfusion. GSH-Px activity of the right ventricle increased with ischemia, and ischemic-reperfusion. These results indicate that cardiac tissue chemiluminescence would be a useful and sensitive tool for the detection of oxygen free radical-induced cardiac injury.
We investigated the effects of H2O2 generated by glucose (G) and glucose oxidase (GO) on the isolated rabbit tracheal smooth muscle suspended in Krebs-Ringer solution. H2O2 generated by G+GO was measured with luminol-dependent chemiluminescence. G+GO in the concentrations of 1x (1.80 microM G, 0.075 U/ml GO) and 2, 4, and 8x generated 1.35, 3.2, 6.10, and 6.00 microM of H2O2, respectively. H2O2 produced relaxation of rabbit tracheal smooth muscle, relaxed acetylcholine (ACh)-precontracted muscle, and reduced muscle responsiveness to ACh. These effects were concentration dependent. H2O2, however, produced contraction of guinea pig tracheal smooth muscle. Catalase completely inhibited the H2O2-induced relaxation of ACh-precontracted tracheal smooth muscle. H2O2-induced relaxation was greater in preparations with intact epithelium (65%) than in those denuded of epithelium (40%). The relaxant effects of H2O2 in the presence of an inhibitor of nitric oxide synthesis (NG-monomethyl-L-arginine), an inhibitor of guanylate cyclase (methylene blue), an inhibitor of cyclooxygenase (indomethacin), and an ATP-sensitive K+ channel blocker (glipizide) were 44, 44, 39, and 48%, respectively. H2O2-induced relaxation in the presence of indomethacin in preparations with denuded epithelium was 29%. These results suggest that H2O2-induced relaxation of tracheal smooth muscle is partly epithelium dependent and is mediated by inhibitory arachidonic acid metabolites, epithelium-derived relaxing factor (nitric oxide), ATP-sensitive K+ channels, and the synthesis and release of prostaglandins from epithelium and the underlying smooth muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.