The fast initial down-regulation of expression of inflammatory mediators coincided with rapid killing of actively dividing bacilli, whereas slower delayed changes occurred as drugs acted on dormant bacilli and coincided with lung pathology resolution. Measurement of biosignatures during clinical trials of new drugs could be useful predictors of rapid bactericidal or sterilizing drug activity, and would expedite the licensing of new treatment regimens.
High levels of transcription in Saccharomyces cerevisiae are associated with increased genetic instability, which has been linked to DNA damage. Here, we describe a pGAL-CAN1 forward mutation assay for studying transcription-associated mutagenesis (TAM) in yeast. In a wild-type background with no alterations in DNA repair capacity, ≈50% of forward mutations that arise in the CAN1 gene under high-transcription conditions are deletions of 2-5 bp. Furthermore, the deletions characteristic of TAM localize to discrete hotspots that coincide with 2-4 copies of a tandem repeat. Although the signature deletions of TAM are not affected by the loss of error-free or error-prone lesion bypass pathways, they are completely eliminated by deletion of the TOP1 gene, which encodes the yeast type IB topoisomerase. Hotspots can be transposed into the context of a frameshift reversion assay, which is sensitive enough to detect Top1-dependent deletions even in the absence of high transcription. We suggest that the accumulation of Top1 cleavage complexes is related to the level of transcription and that their removal leads to the signature deletions. Given the high degree of conservation between DNA metabolic processes, the links established here among transcription, Top1, and mutagenesis are likely to extend beyond the yeast system.
When transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens. Cryptococcus species are yeastlike fungi that cause lethal infections, especially in HIV-infected patients. Using Cryptococcus deneoformans in a murine model of infection, we examined contributors to drug resistance and demonstrated that transposon mutagenesis drives the development of 5-fluoroorotic acid (5FOA) resistance. Inactivation of target genes URA3 or URA5 primarily reflected the insertion of two transposable elements (TEs): the T1 DNA transposon and the TCN12 retrotransposon. Consistent with in vivo results, increased rates of mutagenesis and resistance to 5FOA and the antifungal drugs rapamycin/FK506 (rap/FK506) and 5-fluorocytosine (5FC) were found when Cryptococcus was incubated at 37° compared to 30° in vitro, a condition that mimics the temperature shift that occurs during the environment-to-host transition. Inactivation of the RNA interference (RNAi) pathway, which suppresses TE movement in many organisms, was not sufficient to elevate TE movement at 30° to the level observed at 37°. We propose that temperature-dependent TE mobilization in Cryptococcus is an important mechanism that enhances microbial adaptation and promotes pathogenesis and drug resistance in the human host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.