Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of cells that play a critical role in tumor associated immune suppression. In an attempt to identify a specific subset of MDSC primarily responsible for immunosuppressive features of these cells, 10 different tumor models were investigated. All models showed variable but significant increase in the population of MDSC. Variability of MDSC expansion in vivo matched closely the effect of tumor cell condition medium in vitro. MDSC consists of two major subsets of Ly6G+Ly6Clow granulocytic and Ly6G−Ly6Chigh monocytic cells. Granulocytic MDSC have increased level of reactive oxygen species and undetectable level of NO whereas monocytic MDSC had increased level of NO but undetectable levels of reactive oxygen species. However, their suppressive activity per cell basis was comparable. Almost all tumor models demonstrated a preferential expansion of granulocytic subset of MDSC. We performed a phenotypical and functional analysis of several surface molecules previously suggested to be involved in MDSC-mediated suppression of T cells: CD115, CD124, CD80, PD-L1, and PD-L2. Although substantial proportion of MDSC expressed those molecules no differences in the level of their expression or the proportion, positive cells were found between MDSC and cells from tumor-free mice that lack immune suppressive activity. The level of MDSC-mediated T cell suppression did not depend on the expression of these molecules. These data indicate that suppressive features of MDSC is caused not by expansion of a specific subset but more likely represent a functional state of these cells.
Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) are
important regulators of immune responses in cancer and have been directly
implicated in promotion of tumor progression. However, the heterogeneity of
these cells and lack of distinct markers hampers the progress in understanding
of the biology and clinical importance of these cells. Using partial enrichment
of PMN-MDSC with gradient centrifugation we determined that low density PMN-MDSC
and high density neutrophils from the same cancer patients had a distinct gene
profile. Most prominent changes were observed in the expression of genes
associated with endoplasmic reticulum (ER) stress. Surprisingly, low-density
lipoprotein (LDL) was one of the most increased regulators and its receptor
oxidized LDL receptor 1 OLR1 was one of the most overexpressed
genes in PMN-MDSC. Lectin-type oxidized LDL receptor 1 (LOX-1) encoded by
OLR1 was practically undetectable in neutrophils in
peripheral blood of healthy donors, whereas 5–15% of total
neutrophils in cancer patients and 15–50% of neutrophils in
tumor tissues were LOX-1+. In contrast to their
LOX-1− counterparts, LOX-1+ neutrophils had
gene signature, potent immune suppressive activity, up-regulation of ER stress,
and other biochemical characteristics of PMN-MDSC. Moreover, induction of ER
stress in neutrophils from healthy donors up-regulated LOX-1 expression and
converted these cells to suppressive PMN-MDSC. Thus, we identified a specific
marker of human PMN-MDSC associated with ER stress and lipid metabolism, which
provides new insight to the biology and potential therapeutic targeting of these
cells.
Summary
Myeloid-derived suppressor cells (MDSC) play an important role in the cellular network regulating immune responses in cancer, chronic infectious diseases, autoimmunity, and in other pathologic conditions. Morphological, phenotypic and functional heterogeneity is a hallmark of MDSC. This heterogeneity demonstrates the plasticity of this immune suppressive myeloid compartment, and shows how various tumors and infectious agents can have similar biological effects on myeloid cells despite the differences in the factors that they produce to influence the immune system; however, such heterogeneity creates ambiguity in the definition of MDSC as well as confusion regarding the origin and fate of these cells. In this review we will discuss recent findings that help to better clarify these issues and to determine the place of MDSC within the myeloid cell lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.