ObjectiveSeptic shock has a clinical mortality rate approaching fifty percent. The major clinical manifestations of sepsis are due to the dysregulation of the host's response to infection rather than the direct consequences of the invading pathogen. Central to this initial immunologic response is the activation of leukocytes and microvascular endothelium resulting in cardiovascular instability, lung injury and renal dysfunction. Due to the primary role of leukocyte activation in the sepsis syndrome, a synthetic biomimetic membrane, called a selective cytopheretic device (SCD), was developed to bind activated leukocytes. The incorporation of the SCD along an extracorporeal blood circuit coupled with regional anticoagulation with citrate to lower blood ionized calcium was devised to modulate leukocyte activation in sepsis.DesignLaboratory investigation.SettingUniversity of Michigan Medical School.SubjectsPigs weighing 30-35 kg.InterventionsTo assess the effect of the SCD in septic shock, pigs were administered 30×1010 bacteria/kg body weight of Escherichia coli into the peritoneal cavity and within 1 hr were immediately placed in an extracorporeal circuit containing SCD.Measurements and Main ResultsIn this animal model, the SCD with citrate compared to control groups without the SCD or with heparin anticoagulation ameliorated the cardiovascular instability and lung sequestration of activated leukocytes, reduced renal dysfunction and improved survival time compared to various control groups. This effect was associated with minimal elevations of systemic circulating neutrophil activation.ConclusionsThese preclinical studies along with two favorable exploratory clinical trials form the basis of an FDA-approved investigational device exemption for a pivotal multicenter, randomized control trial currently underway.
This study showed no statistically significant difference in the duration of post-operative analgesia between the supraclavicular and interscalene blocks. However, the supraclavicular block was associated with a lower incidence of diaphragmatic paresis compared with that of the interscalene block after shoulder surgery.
BackgroundDexmedetomidine extends the duration of nerve block when administered perineurally together with local anesthetics by central and/or peripheral action. In this study, we compared the duration of nerve block between dexmedetomidine and epinephrine as an adjuvant to 1% mepivacaine in infraclavicular brachial plexus block.Methods Thirty patients, scheduled for upper limb surgery were assigned randomly to 3 groups of 10 patients each. We performed brachial plexus block using a nerve stimulator. In the control group (group C), patients received 40 ml of 1% mepivacaine. In group E, patients received 40 ml of 1% mepivacaine containing 200 µg of epinephrine as an adjuvant. In group D, patients received 40 ml of 1% mepivacaine containing 1 µg/kg of dexmedetomidine as an adjuvant. Sensory block duration, motor block duration, time to sense pain, and onset time were assessed. We also monitored blood pressure, heart rate, oxygen saturation and bispectral index.ResultsIn group D and group E, sensory block duration, motor block duration and time to sense first pain were prolonged significantly compared to group C. However, there was no significant difference between group D and group E.ConclusionsPerineural 1 µg/kg of dexmedetomidine similarly prolonged nerve block duration compared to 200 µg of epinephrine, but slowed heart rate. Thus, dexmedetomidine is expected to be a good alternative as an adjuvant to local anesthesia in patients who are cautioned against epinephrine.
Currently available TBW equations overestimate TBW in both Korean normal control subjects and HD patients. Among them, the Watson formula appears to be the closest to TBW and to have the least bias. Based on this analysis, it is reasonable to use the Watson formula for the calculation of TBW in Korean adult control and HD subjects until an Asian-based TBW equation is available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.