Coumarin-6 polycrystalline films were fabricated from vacuum deposition at various substrate temperatures Tsub from 106 to 178 °C with a fixed source temperature of 185 °C. Because of its slenderer and more asymmetric structure, the adhered coumarin-6 molecule on top of the growing interface encounters a larger steric energetic barrier of 0.92 eV as estimated from the Arrhenius plot of growth rate versus 1/Tsub. From top-view SEM pictures, the as-deposited coumarin-6 thin films exhibit a twisted pattern and a kinematic roughness for Tsub < 150 °C; while clear facets emerge for Tsub ≥ 150 °C due to the increase of surface diffusion energy of the adhered molecules. From XRD analysis, besides the confirmation of the triclinic structure two anomalous peaks observed at 2θ ~ 9.007° and 7.260° are explained due to the co-existence of N- and S-coumarin-6-isomers within the crystalline grains. Furthermore, for coumarin-6 polycrystalline films deposited at Tsub = 150 °C with high crystallinity of the constituent grains, the bandgap determined from optical transmission is around 2.392 eV; and from photoluminescence spectra, the fitted four emission components are assigned to the Frenkel and charge transfer excitons recombination with participation of molecular vibrational states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.