A new depth-integrated equation is derived to model a time-harmonic motion of small-amplitude waves in water of variable depth. The new equation, which is referred to as the complementary mild-slope equation here, is derived from Hamilton's principle in terms of stream function. In the formulation, the continuity equation is satisfied exactly in the fluid domain. Also satisfied exactly are the kinematic boundary conditions at the still water level and the uneven sea bottom. The numerical results of the present model are compared to the exact linear theory and the existing mild-slope equations that have been derived from the velocity-potential formulation. The computed results give better agreement with those of the exact linear theory than the other mild-slope equations. Comparison shows that the new equation provides accurate results for a bottom slope up to 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.