The purpose of this study is to show more diverse texture modifications by changing the material of a food 3D-printed structure conducted only with soft materials (in this case, potatoes and chocolate) to a hard material (in this case, maltitol here). However, unlike previous 3D-printed food materials, sweetener materials such as sucrose and maltitol are sensitively caramelized at a high melting temperature. As such, there is no commercialized printing equipment. Therefore, a printing process experiment was conducted first in this case. To do this, a high-temperature syringe pump-based extrusion device was designed, and process tests according to the temperature and environment were conducted. An assessment of the internal structural changes according to the infill patterns and infill percentages was conducted based on the acquired process conditions. The texture strength increased as the infill percentage increased. Depending on the infill patterns, the texture strength increased in the order of the Hilbert curve, honeycomb, and rectilinear samples here. As a result, a change in the texture strength was determined through a change in the internal structure of a hard food material using 3D printing, which showed a wider range of change than in conventional soft food materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.