Phosphorus-doped double-layered graphene field-effect transistors (PDGFETs) show much stronger air-stable n-type behavior than nitrogen-doped double-layered graphene FETs (NDGFETs), even under an oxygen atmosphere, due to strong nucleophilicity, which may lead to real applications for air-stable n-type graphene channels.
We demonstrate the fabrication of a biosensor based on graphene coupled with polydimethylsiloxane (PDMS) waveguide. Biosensors work on the principle of local evanescent graphene-coupled wave sensor. It is observed that the evanescent field shifts in the presence of chemical or biological species as evanescent waves are extremely sensitive to a change in refractive index. This method helps to monitor the target analyte by attaching the selective receptor molecules to the surface of the PDMS optical waveguide resulting in its optical intensity distribution shift. We monitor the electrical properties of graphene in the dark and under illumination of PDMS waveguide. The changes in photocurrent through the graphene film were monitored for blue, green, and red light. We observed that the fabricated graphene-coupled PDMS optical waveguide sensor is sensitive to visible light for the used bioanalytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.