Extracting performance from modern parallel architectures requires that applications be divided into many different threads of execution. Unfortunately selecting the appropriate number of threads for an application is a daunting task. Having too many threads can quickly saturate shared resources, such as cache capacity or memory bandwidth, thus degrading performance. On the other hand, having too few threads makes inefficient use of the resources available. Beyond static resource assignment, the program inputs and dynamic system state (e.g., what other applications are executing in the system) can have a significant impact on the right number of threads to use for a particular application. To address this problem we present the Thread Tailor, a dynamic system that automatically adjusts the number of threads in an application to optimize system efficiency. The Thread Tailor leverages offline analysis to estimate what type of threads will exist at runtime and the communication patterns between them. Using this information Thread Tailor dynamically combines threads to better suit the needs of the target system. Thread Tailor adjusts not only to the architecture, but also other applications in the system, and this paper demonstrates that this type of adjustment can lead to significantly better use of thread-level parallelism in real-world architectures.
Extracting performance from modern parallel architectures requires that applications be divided into many different threads of execution. Unfortunately selecting the appropriate number of threads for an application is a daunting task. Having too many threads can quickly saturate shared resources, such as cache capacity or memory bandwidth, thus degrading performance. On the other hand, having too few threads makes inefficient use of the resources available. Beyond static resource assignment, the program inputs and dynamic system state (e.g., what other applications are executing in the system) can have a significant impact on the right number of threads to use for a particular application.To address this problem we present the Thread Tailor, a dynamic system that automatically adjusts the number of threads in an application to optimize system efficiency. The Thread Tailor leverages offline analysis to estimate what type of threads will exist at runtime and the communication patterns between them. Using this information Thread Tailor dynamically combines threads to better suit the needs of the target system. Thread Tailor adjusts not only to the architecture, but also other applications in the system, and this paper demonstrates that this type of adjustment can lead to significantly better use of thread-level parallelism in real-world architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.