A novel capacitive humidity sensor based on carbon black/polyimide composites is presented in this paper. The details of the fabrication, sensor characteristics, and effect of the carbon black additive are described. It was confirmed that the polyimide composite filled with a tiny amount of carbon black was suitable for a humidity sensing dielectric. The humidity sensors with three different dielectrics, which were pure polyimide, 0.01 wt% carbon black/polyimide, and 0.05 wt% carbon black/polyimide, were fabricated by a micro-electro-mechanical-system (MEMS) process. As the amount of the carbon black additive increased, the sensitivity of the humidity sensor increased. The humidity sensor with 0.05 wt% of carbon black had a much higher sensitivity of 15.21% (20–80% RH, 0.2535%/% RH) than that of the sensor with pure polyimide, which was 9.73% (0.1622%/% RH). The addition of carbon black also led to an enhancement in the hysteresis and response speed. The hysteresis of the humidity sensor decreased from 2.17 to 1.80% when increasing the amount of the carbon black additive. The response speed of the humidity sensor with 0.05 wt% of carbon black was measured to be ~10% faster than that of the sensor with pure polyimide. The long-term stability of the humidity sensors was demonstrated as well.
A new type of photoactivable NO-releasing ruthenium nitrosyl complex, [Ru(EPBP)Cl(NO)], with a tetradentate ligand, N,N'-(ethane-1,2-diyldi-o-phenylene)-bis(pyridine-2carboxamide) (= H 2 EPBP) was synthesized. Single crystal Xray crystallography revealed that the complex has a distorted octahedral coordination geometry and NO is positioned at cis to Cl À ion. NO-photolysis was observed under a white room light. The photodissociation of RuÀ NO bond was identified by various techniques including X-ray crystallography, IR, UV/ Vis absorption, electron paramagnetic resonance (EPR), and NMR spectroscopies. Quantum yields for the NO-photolysis of the complex in CH 3 OH, CHCl 3 , DMSO, CH 3 CN, and CH 3 NO 2 were measured to be 0.19-0.36 with 400 (� 5) nm excitation. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations were performed to understand the details of the photodissociation of the complex. The calculations suggest that the NO photolysis is most likely initiated by the electronic transition from the aniline moiety π MOs (π (aniline)) of the EPBP 2À chelating ligand to the π-antibonding MO of RuÀ NO (π*(RuÀ NO)). Experimental and theoretical investigations indicate that the EPBP 2À ligand provides an effective platform forming ruthenium nitrosyl complexes useful for NO-photoreleasing.
This paper presents an end-to-end text-independent speaker verification framework by jointly considering the speaker embedding (SE) network and automatic speech recognition (ASR) network. The SE network learns to output an embedding vector which distinguishes the speaker characteristics of the input utterance, while the ASR network learns to recognize the phonetic context of the input. In training our speaker verification framework, we consider both the triplet loss minimization and adversarial gradient of the ASR network to obtain more discriminative and text-independent speaker embedding vectors. With the triplet loss, the distances between the embedding vectors of the same speaker are minimized while those of different speakers are maximized. Also, with the adversarial gradient of the ASR network, the text-dependency of the speaker embedding vector can be reduced. In the experiments, we evaluated our speaker verification framework using the LibriSpeech and CHiME 2013 dataset, and the evaluation results show that our speaker verification framework shows lower equal error rate and better textindependency compared to the other approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.