Recently, reconfigurable intelligent surfaces (RISs) have received much interest from both academia and industry due to their flexibility and cost-effectiveness in adjusting the phase and amplitude of wireless signals with low-cost passive reflecting elements. In particular, many RIS-aided techniques have been proposed to improve both data rate and energy efficiency for 6G wireless communication systems. In this paper, we propose a novel RIS-based channel randomization (RCR) technique for improving physical-layer security (PLS) for a time-division duplex (TDD) downlink cellular wire-tap network which consists of a single base station (BS) with multiple antennas, multiple legitimate pieces of user equipment (UE), multiple eavesdroppers (EVEs), and multiple RISs. We assume that only a line-of-sight (LOS) channel exists among the BS, the RISs, and the UE due to propagation characteristics of tera-hertz (THz) spectrum bands that may be used in 6G wireless communication systems. In the proposed technique, each RIS first pseudo-randomly generates multiple reflection matrices and utilizes them for both pilot signal duration (PSD) in uplink and data transmission duration (DTD) in downlink. Then, the BS estimates wireless channels of UE with reflection matrices of all RISs and selects the UE that has the best secrecy rate for each reflection matrix generated. It is shown herein that the proposed technique outperforms the conventional techniques in terms of achievable secrecy rates.
In this paper, we propose a novel opportunistic interference alignment technique for spectrum-shared radar and uplink cellular communication systems where both systems are equipped with multiple antennas. In the proposed OIA technique, the radar system sends its signal so that the radar signal is received into interference space at base stations (BSs) of the cellular system, while each uplink user (UE) generates its transmit beamforming vector so that communication signals are received within interference space at the radar receiver. Moreover, to achieve better sum-rate performance of the cellular communication system, the BS selects the UEs which results in sufficiently small interference to other cells for the uplink communication. With the proposed OIA technique, detection performance of the radar system is protected, while the communication system achieves satisfactory sum-rate performance. Through extensive computer simulations, we show that the performances of both radar and communication systems with the proposed technique significantly outperform a conventional null-space projection based spectrum sharing scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.