In classical computation, Toom–Cook is one of the multiplication methods for large numbers which offers faster execution time compared to other algorithms such as schoolbook and Karatsuba multiplication. For the use in quantum computation, prior work considered the Toom-2.5 variant rather than the classically faster and more prominent Toom-3, primarily to avoid the nontrivial division operations inherent in the latter circuit. In this paper, we investigate the quantum circuit for Toom-3 multiplication, which is expected to give an asymptotically lower depth than the Toom-2.5 circuit. In particular, we designed the corresponding quantum circuit and adopted the sequence proposed by Bodrato to yield a lower number of operations, especially in terms of nontrivial division, which is reduced to only one exact division by 3 circuit per iteration. Moreover, to further minimize the cost of the remaining division, we utilize the unique property of the particular division circuit, replacing it with a constant multiplication by reciprocal circuit and the corresponding swap operations. Our numerical analysis shows that the resulting circuit indeed gives a lower asymptotic complexity in terms of Toffoli depth and qubit count compared to Toom-2.5 but with a large number of Toffoli gates that mainly come from realizing the division operation.
This paper presents quantum cryptanalysis for binary elliptic curves from a time-efficient implementation perspective (i.e., reducing the circuit depth), complementing the previous research that focuses on the space-efficiency perspective (i.e., reducing the circuit width). To achieve depth optimization, we propose an improvement to the existing circuit implementation of the Karatsuba multiplier and FLT-based inversion, then construct and analyze the resource in the Qiskit quantum computer simulator. The proposed multiplier architecture, which improves the quantum Karatsuba multiplier from the previous study, reduces the depth and yields a lower number of CNOT gates that bound to O(n log 2 (3) ) while maintaining a similar number of Toffoli gates and qubits. Furthermore, our improved FLT-based inversion reduces CNOT count and overall depth, with a tradeoff of higher qubit size. Finally, we employ the proposed multiplier and FLTbased inversion for performing quantum cryptanalysis of binary point addition as well as the complete Shor's algorithm for the elliptic curve discrete logarithm problem (ECDLP). As a result, apart from depth reduction, we are also able to reduce up to 90% of the Toffoli gates required in a single-step point addition compared to prior work, leading to significant improvements and giving new insights on quantum cryptanalysis for a depth-optimized implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.