A B S T R A C TThe subject of this research was electron equivalent fluxes about the decomposition of pharmaceuticals (sulfamethazine and sulfathiazole) using an oxygen-based membrane biofilm reactor (MBfR). The influent concentrations in pharmaceuticals feed-medium were (in ppb): sulfamethazine (40) and sulfathiazole (85). The oxygen-based MBfR system consisted of two membrane modules connected to a recirculation loop. The main membrane module contained a bundle of 32 hydrophobic hollow-fiber membranes inside a polyvinyl-chloride pipe shell and the other module contained a single fiber used to take biofilm samples. Pure O 2 was supplied to the inside of the hollow fibers through the manifold at the base, and the O 2 pressure for both reactors was 13 kPa. (1 kPa = 0.0099 atm = 0.145 psi). HRT was 3 h. The decomposition ratio of pharmaceuticals (sulfamethazine and sulfathiazole) using oxygenbased MBfR was (%): sulfamethazine (77 ± 2) and sulfathiazole (87 ± 2). In all cases, nitrification was the largest provider of electrons, together accounted for at least 99.98% of the total electron flux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.