Hermansky-Pudlak syndrome (HPS) is an often-fatal autosomal recessive disease in which albinism, bleeding, and lysosomal storage result from defects of diverse cytoplasmic organelles: melanosomes, platelet dense bodies, and lysosomes. HPS is the most common single-gene disorder in Puerto Rico, with an incidence of 1 in 1,800. We have identified the HPS gene by positional cloning, and found homozygous frameshifts in this gene in Puerto Rican, Swiss, Irish and Japanese HPS patients. The HPS polypeptide is a novel transmembrane protein that is likely to be a component of multiple cytoplasmic organelles and that is apparently crucial for their normal development and function. The different clinical phenotypes associated with the different HPS frameshifts we observed suggests that differentially truncated HPS polypeptides may have somewhat different consequences for subcellular function.
Hermansky-Pudlak syndrome (HPS) is a rare, autosomal recessive disorder in which oculocutaneous albinism, bleeding, and lysosomal ceroid storage result from defects of multiple cytoplasmic organelles-melanosomes, platelet-dense granules, and lysosomes. As reported elsewhere, we mapped the human HPS gene to chromosome segment 10q23, positionally cloned the gene, and identified three pathologic mutations of the gene, in patients from Puerto Rico, Japan, and Europe. Here, we describe mutation analysis of 44 unrelated Puerto Rican and 24 unrelated non-Puerto Rican HPS patients. A 16-bp frameshift duplication, the result of an apparent founder effect, is nearly ubiquitous among Puerto Rican patients. A frameshift at codon 322 may be the most frequent HPS mutation in Europeans. We also describe six novel HPS mutations: a 5' splice-junction mutation of IVS5, three frameshifts, a nonsense mutation, and a one-codon in-frame deletion. These mutations define an apparent frameshift hot spot at codons 321-322. Overall, however, we detected mutations in the HPS gene in only about half of non-Puerto Rican patients, and we present evidence that suggests locus heterogeneity for HPS.
Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disorder characterized by severe immunologic defects, reduced pigmentation, bleeding tendency, and progressive neurological dysfunction. Most patients present in early childhood and die unless treated by bone marrow transplantation. About 10-15% of patients exhibit a much milder clinical phenotype and survive to adulthood, but develop progressive and often fatal neurological dysfunction. Very rare patients exhibit an intermediate adolescent CHS phenotype, presenting with severe infections in early childhood, but a milder course by adolescence, with no accelerated phase. Here, we describe the organization and genomic DNA sequence of the CHS1 gene and mutation analysis of 21 unrelated patients with the childhood, adolescent, and adult forms of CHS. In patients with severe childhood CHS, we found only functionally null mutant CHS1 alleles, whereas in patients with the adolescent and adult forms of CHS we also found missense mutant alleles that likely encode CHS1 polypeptides with partial function. Together, these results suggest an allelic genotype-phenotype relationship among the various clinical forms of CHS.
Joubert syndrome (JS) is an autosomal recessive disorder, consisting of mental retardation, cerebellar vermis aplasia, an irregular breathing pattern, and retinal degeneration. Nephronophthisis (NPHP) is found in 17-27% of these patients, which was designated JS type B. Mutations in four separate genes (AHI1, NPHP1, CEP290/NPHP6, and MKS3) are linked to JS. However, missense mutations in a new ciliary gene (RPGRIP1L) were found in type B patients. We analyzed a cohort of 56 patients with JS type B who were negative for mutations in three (AHI1, NPHP1, and CEP290/NPHP6) of the four genes previously linked to the syndrome. The 26 exons encoding RPGRIP1L were analyzed by means of PCR amplification, CEL I endonuclease digestion, and subsequent sequencing. Using this approach, four different mutations in the RPGRIP1L gene in five different families were identified and three were found to be novel mutations. Additionally, we verified that missense mutations are responsible for JS type B and cluster in exon 15 of the RPGRIP1L gene. Our studies confirm that a T615P mutation represents the most common mutation in the RPGRIP1L gene causing disease in about 8-10% of JS type B patients negative for NPHP1, NPHP6, or AHI1 mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.