BP neural network has two disadvantages, one is to fall into local minimum value easily; the other is the slow convergence. We propose in this paper an approach, including three main operations. Firstly, the algorithm of particle swarm optimization (PSO) is applied to improve back propagation (BP) neural network. Secondly, principal components analysis (PCA) method is used to deal with the original information. Thirdly, after optimization of BP neural network, we employ it into the intrusion detection system. The simulation results reveal that the new proposed BP neural network is superior to the traditional BP neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.