Gene products or pathways that are aberrantly activated in cancer but not in normal tissue hold great promises for being effective and safe anticancer therapeutic targets. Many targeted drugs have entered clinical trials but so far showed limited efficacy mostly due to variability in treatment responses and often rapidly emerging resistance. Toward more effective treatment options, we will need multi-targeted drugs or drug combinations, which selectively inhibit the viability and growth of cancer cells and block distinct escape mechanisms for the cells to become resistant. Functional profiling of drug combinations requires careful experimental design and robust data analysis approaches. At the Institute for Molecular Medicine Finland (FIMM), we have developed an experimental-computational pipeline for high-throughput screening of drug combination effects in cancer cells. The integration of automated screening techniques with advanced synergy scoring tools allows for efficient and reliable detection of synergistic drug interactions within a specific window of concentrations, hence accelerating the identification of potential drug combinations for further confirmatory studies.
High-throughput drug combination screening provides a systematic strategy to discover unexpected combinatorial synergies in pre-clinical cell models. However, phenotypic combinatorial screening with multi-dose matrix assays is experimentally expensive, especially when the aim is to identify selective combination synergies across a large panel of cell lines or patient samples. Here we implemented DECREASE, an efficient machine learning model that requires only a limited set of pairwise dose-response measurements for accurate prediction of drug combination synergy and antagonism. Using a compendium of 23,595 drug combination matrices tested in various cancer cell lines, and malaria and Ebola infection models, we demonstrate how cost-effective experimental designs with DECREASE capture almost the same degree of information for synergy and antagonism detection as the fully-measured dose-response matrices. Measuring only the diagonal of the matrix provides an accurate and practical option for combinatorial screening. The open-source web-implementation enables applications of DECREASE to both pre-clinical and translational studies.
Translational relevance The majority of PDOs from colorectal liver metastases were sensitive to anticancer drugs in clinical use and/or under development in late-phase clinical trials. Together with only a modest level of intrapatient inter-metastatic pharmacological heterogeneity, this reinforces a potential benefit from off-label use of drugs guided by both pharmacological profiling and established molecular markers. Correlation in the overall variation at the drug sensitivity and gene expression levels supports the relevance of transcriptomic profiling in pharmacogenomic assessments. Research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.