We report on reversible all-optical emission control and lasing in plasmonic nanoparticle lattices. By incorporating photochromic molecules into the liquid gain medium composed of organic fluorescent molecules, we realize all-optical control over gain and absorption, the two key parameters associated with both conventional and nanoscale lasing. We demonstrate reversible photoswitching between two distinct modes of operation, 1) spontaneous emission to the lattice mode, characterized by broad emission linewidth, low emission intensity and large angular distribution and 2) lasing action, characterised by very narrow (sub-nm) linewidths due to emergence of increased gain and temporal coherence in the system, approximately three orders of magnitude increase in emission intensity, and narrow 0.7 degree angular divergence of the beam.A rate-equation model is employed to describe the operation of the switchable plasmonic laser. Our results provide the first demonstration of optically tunable losses 1 in plasmonic lattice lasers, which is an important milestone for the development of active plasmonics and paves the way for ultrafast all-optical switching of plasmonic nanolasers.
We report first-order spatial and temporal correlations in strongly coupled plasmonic Bose-Einstein condensates. The condensate is large, more than 20 times the spatial coherence length of the polaritons in the uncondensed system and 100 times the healing length, making plasmonic lattices an attractive platform for studying long-range spatial correlations in two dimensions. We find that both spatial and temporal coherence display nonexponential decay; the results suggest power-law or stretched exponential behavior with different exponents for spatial and temporal correlation decays.
Polarization textures of light may reflect fundamental phenomena, such as topological defects, and can be utilized in engineering light beams. They have been observed, for instance, in photonic crystal lasers and semiconductor polariton condensates. Here we demonstrate domain wall polarization textures in a plasmonic lattice Bose–Einstein condensate. A key ingredient of the textures is found to be a condensate phase that varies spatially in a nontrivial manner. The phase of the Bose–Einstein condensate is reconstructed from the real- and Fourier-space images using a phase retrieval algorithm. We introduce a simple theoretical model that captures the results and can be used for design of the polarization patterns and demonstrate that the textures can be optically switched. The results open new prospects for fundamental studies of non-equilibrium condensation and sources of polarization-structured beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.