Previously, we showed that basal activity of nitric oxide (NO)/cyclic GMP (cGMP)/protein kinase G (PKG) signaling pathway protects against spontaneous apoptosis and confers resistance to cisplatin-induced apoptosis in human ovarian cancer cells. The present study determines whether basal PKG kinase activity regulates Src family kinase (SFK) activity and proliferation in these cells. PKG-Iα was identified as predominant isoform in both OV2008 (cisplatin-sensitive, wild-type p53) and A2780cp (cisplatin-resistant, mutated p53) ovarian cancer cells. In both cell lines, ODQ (inhibitor of endogenous NO-induced cGMP biosynthesis), DT-2 (highly specific inhibitor of PKG-Iα kinase activity), and PKG-Iα knockdown (using small interfering RNA) caused concentration-dependent inhibition of DNA synthesis (assessed by bromodeoxyuridine incorporation), indicating an important role of basal cGMP/PKG-Iα kinase activity in promoting cell proliferation. DNA synthesis in OV2008 cells was dependent on SFK activity, determined using highly selective SFK inhibitor, 4-(4′-phenoxyanilino)-6,7-dimethoxyquinazoline (SKI-1). Studies using DT-2 and PKG-Iα small interfering RNA revealed that SFK activity was dependent on PKG-Iα kinase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.