Type 2 diabetes mellitus is a major health problem of increasing incidence. To better study the pathogenesis and potential therapeutic agents for this disease, appropriate animal models are needed. Old World nonhuman primates (NHPs) are a useful animal model of type 2 diabetes; like humans, the disease is most common in older, obese animals. Before developing overt diabetes, NHPs have a period of obesity-associated insulin resistance that is initially met with compensatory insulin secretion. When either a relative or absolute deficiency in pancreatic insulin production occurs, fasting glucose concentrations begin to increase and diabetic signs become apparent. Pathological changes in pancreatic islets are also similar to those seen in human diabetics. Initially there is hyperplasia of the islets with abundant insulin production typically followed by replacement of islets with islet-associated amyloid. Diabetic NHPs have detrimental changes in plasma lipid and lipoprotein concentrations, lipoprotein composition, and glycation, which may contribute to progression of atherosclerosis. As both the prediabetic condition (similar to metabolic syndrome in humans) and overt diabetes become better defined in monkeys, their use in pharmacological studies is increasing. Likely due to their genetic similarity to humans and the similar characteristics of the disease in NHPs, NHPs have been used to study recently developed agonists of the peroxisome proliferators-activated receptors. Importantly, agonists of the different receptor subclasses elicit similar responses in both humans and NHPs. Thus, Old World NHPs are a valuable animal model of type 2 diabetes to study disease progression, associated risk factors, and potential new treatments.
Although estrogen replacement therapy is associated with reduced risk of coronary heart disease and reduced extent of coronary artery atherosclerosis, the effects of combined (estrogen plus progestin) hormone-replacement therapy are uncertain. Some observational data indicate that users of combined hormone replacement consisting of continuously administered oral conjugated equine estrogens (CEE) and oral sequentially administered (7 to 14 days per month) medroxyprogesterone acetate (MPA) experience a reduction in risk similar to that of users of CEE alone. However, the effects of combined, continuously administered CEE plus MPA (a prescribing pattern that has gained favor) on the risk of coronary heart disease or atherosclerosis are not known. We studied the effects of CEE (monkey equivalent of 0.625 mg/d) and MPA (monkey equivalent of 2.5 mg/d), administered separately or in combination, on the extent of coronary artery atherosclerosis (average plaque size) in surgically postmenopausal cynomolgus monkeys fed atherogenic diets and treated with these hormones for 30 months. Treatment with CEE alone resulted in atherosclerosis extent that was reduced 72% relative to untreated (estrogen-deficient) controls (P < .004). Atherosclerosis extent in animals treated with CEE plus MPA or MPA alone did not differ from that of untreated controls. Although treatment had marked effects on plasma lipoprotein patterns, statistical adjustment for variation in plasma lipoproteins did not alter the between-group relationships in atherosclerotic plaque size, suggesting that these factors do not explain substantially the atheroprotective effect of estrogen or the MPA-associated antagonism. Although the mechanism(s) remains unclear, we conclude that oral CEE inhibits the initiation and progression of coronary artery atherosclerosis and that continuously administered oral MPA antagonizes this atheroprotective effect.
Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys. Obesity. 2007;15: 1675-1684. Objective: There is conflicting evidence about the propensity of trans fatty acids (TFAs) to cause obesity and insulin resistance. The effect of moderately high intake of dietary monounsaturated TFAs on body composition and indices of glucose metabolism was evaluated to determine any prodiabetic effect in the absence of weight gain. Research Methods and Procedures: Male African green monkeys (Chlorocebus aethiops; n ϭ 42) were assigned to diets containing either cis-monounsaturated fatty acids or an equivalent diet containing the trans-isomers (ϳ8% of energy) for 6 years. Total calories were supplied to provide maintenance energy requirements and were intended to not promote weight gain. Longitudinal body weight and abdominal fat distribution by computed tomography scan analysis at 6 years of study are reported. Fasting plasma insulin, glucose, and fructosamine concentrations were measured. Postprandial insulin and glucose concentrations, and insulin-stimulated serine/threonine protein kinase (Akt), insulin receptor activation, and tumor necrosis factor-␣ concentrations in subcutaneous fat and muscle were measured in subsets of animals. Results: TFA-fed monkeys gained significant weight with increased intra-abdominal fat deposition. Impaired glucose disposal was implied by significant postprandial hyperinsulinemia, elevated fructosamine, and trends toward higher glucose concentrations. Significant reduction in muscle Akt phosphorylation from the TFA-fed monkeys suggested a mechanism for these changes in carbohydrate metabolism. Discussion: Under controlled feeding conditions, long-term TFA consumption was an independent factor in weight gain. TFAs enhanced intra-abdominal deposition of fat, even in the absence of caloric excess, and were associated with insulin resistance, with evidence that there is impaired post-insulin receptor binding signal transduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.