Lateral root formation can be divided into two major phases: pericycle activation and meristem establishment. In Arabidopsis, the first lateral root initiation event is spatially and temporally asynchronous and involves a limited number of cells in the xylem pericycle. To study the molecular regulation during pericycle activation, we developed a lateral rootinducible system. Successive treatments with an auxin transport inhibitor and exogenous auxin were used to prevent the first formative divisions and then to activate the entire pericycle. Our morphological and molecular data show that, in this inducible system, xylem pericycle activation was synchronized and enhanced to cover the entire length of the root. The results also indicate that the inducible system can be considered a novel in planta system for the study of synchronized cell cycle reactivation. In addition, the expression patterns of Kip-Related Protein2 ( KRP2 ) in the pericycle and its ectopic expression data revealed that the cyclin-dependent kinase inhibitor plays a significant role in the regulation of lateral root initiation. KRP2 appears to regulate early lateral root initiation by blocking the G1-to-S transition and to be regulated transcriptionally by auxin.
New plant cells arise at the meristems, where they divide a few times before they leave the cell-cycle program and start to differentiate. Here we show that the E2Fa±DPa transcription factor of Arabidopsis thaliana is a key regulator determining the proliferative status of plant cells. Ectopic expression of E2Fa induced sustained cell proliferation in normally differentiated cotyledon and hypocotyl cells. The phenotype was enhanced strongly by the co-expression of E2Fa with its dimerization partner, DPa. In endoreduplicating cells, E2Fa±DPa also caused extra DNA replication that was correlated with transcriptional induction of S phase genes. Because E2Fa±DPa transgenic plants arrested early in development, we argue that controlled exit of the cell cycle is a prerequisite for normal plant development.
Because plant cells do not move and are surrounded by a rigid cell wall, cell division rates and patterns are believed to be directly responsible for generating new structures throughout development. To study the relationship between cell division and morphogenesis, transgenic tobacco and Arabidopsis plants were constructed expressing dominant mutations in a key regulator of the Arabidopsis cell cycle, the Cdc2a kinase. Plants constitutively overproducing the wild‐type Cdc2a or the mutant form predicted to accelerate the cell cycle did not exhibit a significantly altered development. In contrast, a mutation expected to arrest the cell cycle abolished cell division when expressed in Arabidopsis, whereas some tobacco plants constitutively producing this mutant protein were recovered. These plants had a reduced histone H1 kinase activity and contained considerably fewer cells. These cells were, however, much larger and underwent normal differentiation. Morphogenesis, histogenesis and developmental timing were unaffected. The results indicate that, in plants, the developmental controls defining shape can act independently from cell division rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.