Gene therapy of cancer has been one of the most exciting and elusive areas of therapeutic research in the past decade. Critical developments have occurred in gene therapy targeting cancer cells, cancer vasculature, the immune system, and the bone marrow, itself often the target for severe toxicity from therapeutic agents. We review some recent developments in the field. In each instance, clear preclinical models validated the therapeutic approach and efforts have been made to evaluate the target impact in both preclinical and early clinical trials. Although no cures can consistently be expected from today's cancer gene therapy, the rapid progress may imply that such cures are a few short years away.
Gene transduction of hematopoietic progenitors capable of reconstituting both primary and secondary recipients is an important milestone in preclinical development of gene therapy. Myeloablation conditioning prior to infusion of transduced stem cells causes significant host morbidity. In contrast, drug-resistance gene transfer utilizes judicious in vivo selection of transduced stem cells over time, reaching only the level of transduction and expression required. The O(6)-benzylguanine (BG)-resistant mutant O(6)-methylguanine-DNA methyltransferase (MGMT) gene is a potent selection gene for transduced cells. Using two different mutant MGMTs, G156A and P140K, that vary in BG resistance by a factor of 1:20, we asked whether long-term repopulating and secondary mouse-repopulating cells could be transduced, transplanted, and selected for in the nonmyeloablated recipient and whether the mutant MGMT would continue to be expressed in secondary recipient repopulating cells. We found that under stringent drug-selection competition, cells expressing the more BG-resistant variant, P140K-MGMT, were enriched over G156A-MGMT-expressing progenitors. In addition, the MFG retroviral vector transmitted the mutant MGMT gene to long-term repopulating cells that, after selective enrichment in the nonmyeloablated primary recipient, repopulated secondary mice and continued to express the transgene. Thus, MFG mutant MGMT vectors transduce repopulating hematopoietic stem cells that may be used both for chemotherapeutic drug resistance and to enrich for second therapeutic genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.