Zoo populations can be empirically studied and monitored genetically from three distinct and informative prospectives: (1) the careful collection of breeding and pedigree history; (2) biochemical genetic surveys of gene variation from electrophoretic data; and (3) the extent of variation in morphological characters. We present here a summary of the results and conclusions of biochemical genetic surveys performed to date in mammals and indicate those biochemical genetic loci most likely to be informative in management programs. The results of a number of studies of morphological variation (estimated by coefficients of variation or fluctuating asymmetry) as related to the genetic status of biological populations are reviewed. The applications of such measurements to the characterization of the South African cheetah are reviewed briefly with attention to captive vertebrate species. Specific recommendations for the evaluation of captive populations and for the monitoring of breeding programs by using biochemical and morphological characters are proposed.
Crude extracts of triple-cloned, purified cultures of 22 species of Mycoplasma and Acholeplasma were examined for expression of 21 isozyme systems routinely used to type mammalian cells. Nine previously described enzymes (purine nucleoside phosphorylase, adenylate kinase, dipeptidase, esterase, glyceraldehyde-3-phosphate dehydrogenase, glucose phosphate isomerase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and superoxide dismutase) and three enzymes not previously reported in mycoplasma (triose phosphate isomerase, inorganic pyrophosphatase, and acid phosphatase) were detected in some or all of the species examined. These findings provide new information on the enzymatic expressions of these organisms. Three of the isozyme systems (superoxide dismutase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase) were present in Acholeplasma species but not in any Mycoplasma species. The characteristic pattern of electrophoretic mobility of the 12 isozyme systems also provides a useful biochemical property for identification, characterization, and classification of these mycoplasmas. Mycoplasma isozyme expression for seven of the enzymes were readily detected in various infected-cell culture lines by using either cell extracts or concentrated cell culture fluids. Mycoplasma-specific enzymes found in infected-cell extracts had the same electrophoretic mobility patterns as enzymes obtained from broth-grown mycoplasmas of the same species. Expression of homologous mammalian enzymes was not detectably altered by infection with mycoplasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.