In obesity and type 2 diabetes, expression of the GLUT4 glucose transporter is decreased selectively in adipocytes. Adipose-specific Glut4 (also known as Slc2a4) knockout (adipose-Glut4(-/-)) mice show insulin resistance secondarily in muscle and liver. Here we show, using DNA arrays, that expression of retinol binding protein-4 (RBP4) is elevated in adipose tissue of adipose-Glut4(-/-) mice. We show that serum RBP4 levels are elevated in insulin-resistant mice and humans with obesity and type 2 diabetes. RBP4 levels are normalized by rosiglitazone, an insulin-sensitizing drug. Transgenic overexpression of human RBP4 or injection of recombinant RBP4 in normal mice causes insulin resistance. Conversely, genetic deletion of Rbp4 enhances insulin sensitivity. Fenretinide, a synthetic retinoid that increases urinary excretion of RBP4, normalizes serum RBP4 levels and improves insulin resistance and glucose intolerance in mice with obesity induced by a high-fat diet. Increasing serum RBP4 induces hepatic expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) and impairs insulin signalling in muscle. Thus, RBP4 is an adipocyte-derived 'signal' that may contribute to the pathogenesis of type 2 diabetes. Lowering RBP4 could be a new strategy for treating type 2 diabetes.
Protein-tyrosine phosphatase 1B (PTP-1B) is a major protein-tyrosine phosphatase that has been implicated in the regulation of insulin action, as well as in other signal transduction pathways. To investigate the role of PTP-1B in vivo, we generated homozygotic PTP-1B-null mice by targeted gene disruption. PTP-1B-deficient mice have remarkably low adiposity and are protected from diet-induced obesity. Decreased adiposity is due to a marked reduction in fat cell mass without a decrease in adipocyte number. Leanness in PTP-1B-deficient mice is accompanied by increased basal metabolic rate and total energy expenditure, without marked alteration of uncoupling protein mRNA expression. In addition, insulin-stimulated whole-body glucose disposal is enhanced significantly in PTP-1B-deficient animals, as shown by hyperinsulinemic-euglycemic clamp studies. Remarkably, increased insulin sensitivity in PTP-1B-deficient mice is tissue specific, as insulin-stimulated glucose uptake is elevated in skeletal muscle, whereas adipose tissue is unaffected. Our results identify PTP-1B as a major regulator of energy balance, insulin sensitivity, and body fat stores in vivo.Obesity and diabetes mellitus represent major public health problems. Type 2 diabetes is a polygenic disease affecting over 100 million people worldwide. The risk of developing type 2 diabetes is increased in populations that lead a sedentary lifestyle and consume a typical western diet, in which more than 50% of the calories are derived from fat (34, 37). A high-fat diet and low energy expenditure predispose to obesity, a condition characterized by increased insulin resistance in insulinresponsive tissues, such as skeletal muscle, liver, and white adipose tissue (9, 42). Body weight also is subject to polygenic regulation (18). Many of the key genes that regulate body mass and glucose homeostasis remain to be identified (27).Insulin plays a critical role in regulating glucose homeostasis, lipid metabolism, and energy balance. Insulin signaling is initiated by binding of insulin to the insulin receptor (IR), a receptor tyrosine kinase. Insulin binding evokes a cascade of phosphorylation events, beginning with the autophosphorylation of the IR on multiple tyrosyl residues. Autophosphorylation enhances IR kinase activity and triggers downstream signaling events. These include tyrosyl phosphorylation of IR substrate (IRS) proteins (IRS-1 to -4) and other adapter molecules (e.g., Grb2 and Shc), whose combined actions mediate the biological effects of insulin (reviewed in references 24, 43, 54, and 69).
Mice lacking the protein-tyrosine phosphatase PTP1B are hypersensitive to insulin and resistant to obesity. However, the molecular basis for resistance to obesity has been unclear. Here we show that PTP1B regulates leptin signaling. In transfection studies, PTP1B dephosphorylates the leptin receptor-associated kinase, Jak2. PTP1B is expressed in hypothalamic regions harboring leptin-responsive neurons. Compared to wild-type littermates, PTP1B(-/-) mice have decreased leptin/body fat ratios, leptin hypersensitivity, and enhanced leptin-induced hypothalamic Stat3 tyrosyl phosphorylation. Gold thioglucose treatment, which ablates leptin-responsive hypothalamic neurons, partially overcomes resistance to obesity in PTP1B(-/-) mice. Our data indicate that PTP1B regulates leptin signaling in vivo, likely by targeting Jak2. PTP1B may be a novel target to treat leptin resistance in obesity.
Protein-tyrosine phosphatase 1B (PTP1B) is a major negative regulator of insulin and leptin sensitivity. PTP1B overexpression in adipose tissue and skeletal muscle of humans and rodents may contribute to insulin resistance and obesity. The mechanisms mediating PTP1B overexpression in obese and diabetic states have been unclear. We find that adipose tissue inflammation and the pro-inflammatory cytokine tumor necrosis factor ␣ (TNF␣) regulate PTP1B expression in vivo. High fat feeding of mice increased PTP1B expression 1.5-to 7-fold in adipose tissue, liver, skeletal muscle, and arcuate nucleus of hypothalamus. PTP1B overexpression in high fat-fed mice coincided with increased adipose tissue expression of the macrophage marker CD68 and TNF␣, which is implicated in causing obesity-induced insulin resistance. TNF␣ increased PTP1B mRNA and protein levels by 2-to 5-fold in a dose-and time-dependent manner in adipocyte and hepatocyte cell lines. TNF␣ administration in mice increased PTP1B mRNA 1.4-to 4-fold in adipose tissue, liver, skeletal muscle, and hypothalamic arcuate nucleus and PTP1B protein 2-fold in liver. Actinomycin D treatment blocked, and high dose salicylate treatment inhibited by 80%, TNF␣-induced PTP1B expression in adipocyte cell lines, suggesting TNF␣ may induce PTP1B transcription via nuclear factor B (NFB) activation. Chromatin immunoprecipitation from adipocyte cell lines and liver of mice demonstrated TNF␣-induced recruitment of NFB subunit p65 to the PTP1B promoter in vitro and in vivo. In mice with diet-induced obesity, TNF␣ deficiency also partly blocked PTP1B overexpression in adipose tissue. Our data suggest that PTP1B overexpression in multiple tissues in obesity is regulated by inflammation and that PTP1B may be a target of anti-inflammatory therapies.According to current World Health Organization estimates, twice as many people worldwide suffer ill health effects from the accumulation of excess adipose mass (1.6 billion) than from malnutrition (800 million). Obesity contributes to the pathogenesis of many important human diseases, including type 2 diabetes and cancer (1). Obesity is accompanied by resistance to insulin and leptin, key hormones regulating glucose homeostasis and body weight (2). The molecular mechanisms underlying leptin and insulin resistance in obesity are not completely understood. PTP1B 2 is a major negative regulator of insulin and leptin sensitivity, acting to dephosphorylate the insulin receptor and the leptin receptor-associated Janus kinase 2 (3, 4). PTP1B may also dephosphorylate more distal components of these signaling pathways, such as insulin receptor substrate 1 (5, 6). In vivo, PTP1B is widely expressed in multiple cell types and tissues, including skeletal muscle, liver, adipose tissue, and brain (3, 4). PTP1B deficiency enhances insulin signaling and sensitivity in skeletal muscle and liver (7-10). PTP1B Ϫ/Ϫ mice also have reduced adiposity and are protected from diet-induced obesity (7, 8) due to enhanced leptin action (11, 12) in neurons (9). Conversely...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.