The macrophage migration inhibitory factor (MIF) is a potent pro-inflammatory cytokine and regulates the anti-inflammator
Background: The histone modification patterns in endometriosis have not been fully characterized. This gap in knowledge results in a poor understanding of the epigenetic mechanisms (and potential therapeutic targets) at play. We aimed to (1) assess global acetylation status of histone 3 (H3) and histone 4 (H4), (2) measure levels of H3 and H4 lysine (K) acetylation and methylation, and (3) to identify histone acetylation patterns in promoter regions of candidate genes in tissues from patients and controls. Methods: Global and K-specific acetylation/methylation levels of histones were measured in 24 lesions, 15 endometrium from patients, and 26 endometrium from controls. Chromatin immunoprecipitation (ChIP)-polymerase chain reaction was used to determine the histone acetylation status of the promoter regions of candidate genes in tissues. Results: The lesions were globally hypoacetylated at H3 (but not H4) compared to eutopic endometrium from controls. Lesions had significantly lower levels of H3K9ac and H4K16ac compared to eutopic endometrium from patients and controls. Tissues from patients were hypermethylated at H3K4, H3K9, and H3K27 compared to endometrium from controls. The ChIP analysis showed hypoacetylation of H3/H4 within promoter regions of candidate genes known to be downregulated in endometriosis (e.g., HOXA10, ESR1, CDH1, and p21 WAF1/Cip1 ) in lesions versus control endometrium. The stereoidogenic factor 1 (SF1) promoter region was enriched for acetylated H3 and H4 in lesions versus control tissues, correlating with its reported high expression in lesions. Conclusions: This study describes the histone code of lesions and endometrium from patients with endometriosis and provides support for a possible role of histone modification in modulation of gene expression in endometriosis.
Epigenetic mechanisms have been ascribed important roles in endometriosis. Covalent histone modifications at lysine residues have been shown to regulate gene expression and thus contribute to pathological states in many diseases. In endometriosis, histone deacetylase inhibition (HDACi) resulted in reactivation of E-cadherin, attenuation of invasion, decreased proliferation of endometriotic cells, and caused lesion regression in an animal model. This study was conducted to assess basal and hormoneregulated gene expression levels of HDAC1 and HDAC2 (HDAC1/2) in cell lines and protein expression levels in tissues. Basal and steroid hormone-regulated HDAC1/2 gene expression levels were determined by quantitative polymerase chain reaction in cell lines and tissues. Protein levels were measured by immunohistochemistry (IHC) in tissues on an endometriosis tissue microarray (TMA). Basal HDAC1/2 gene expression levels were significantly higher in endometriotic versus endometrial stromal cells, which was confirmed by Western blot analysis. Estradiol (E2) and progesterone (P4) significantly downregulated HDAC1 expression in endometrial epithelial cells. Levels of HDAC2 were upregulated by E2 and downregulated by E2 þ P4 in endometrial stromal cells. Hormone modulation of HDAC1/2 gene expression was lost in the endometriotic cell line. Immunohistochemistry showed that HDAC1/2 proteins were expressed in a substantial proportion of lesions and endometrium from patients, and their expression levels varied according to lesion localization. The highest proportion of strong HDAC1 immunostaining was seen in ovarian, skin, and gastrointestinal lesions, and of HDAC2 in skin lesions and endometrium from patients with endometriosis. These studies suggest that endometriosis etiology may be partially explained by epigenetic regulation of gene expression due to dysregulations in the expression of HDACs.
Epigenetic mechanisms may play an important role in the etiology of endometriosis. The modification of histones by methylation of lysine residues has been shown to regulate gene expression by changing chromatin structure. We have previously shown that endometriotic lesions had aberrant levels of histone acetylation (lower) and methylation (higher) than control tissues. We aimed to determine the levels of trimethylated histone 3 at lysine residue 27 (H3K27me3), a well-known repressive mark, by immunoassay of fresh tissues and immunohistochemistry (IHC) of an endometriosis-focused tissue microarray. Also, we aimed to determine levels of expression of enhancer of zeste homolog 2 (EZH2), the enzyme responsible for trimethylation of H3K27me3, in cell lines. Average levels of H3K27me3 measured by immunoassay were not significantly different in lesions compared to endometrium from patients and controls. However, there was a trend of higher levels of H3K27me3 in secretory versus proliferative endometrium. The results of IHC showed that lesions (ovarian, fallopian, and peritoneal) and secretory endometrium from controls have higher percentage of H3K27me3-positive nuclei than eutopic endometrium from patients. Endometriotic epithelial cells express high levels of EZH2, which is upregulated by progesterone. This study provides evidence in support of a role of H3K27me3 in the pathogenesis of endometriosis and for EZH2 as a potential therapeutic target for this disease, but more studies are necessary to understand the molecular mechanisms at play.
This study documents that expression of LOX is differentially regulated in endometriotic lesions and endometrium. A role for LOX in mediating proliferation, migration, and invasion of endometrial and endometriotic cells was observed, which may be implicated in the establishment and progression of endometriotic lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.