Turmeric has been used for centuries in Ayurvedic medicine as a treatment for inflammatory disorders including arthritis. On the basis of this traditional usage, dietary supplements containing turmeric rhizome and turmeric extracts are also being used in the western world for arthritis treatment and prevention. However, to our knowledge, no data are available regarding antiarthritic efficacy of complex turmeric extracts similar in composition to those available for use as dietary supplements. Therefore, the studies described here were undertaken to determine the in vivo efficacy of well-characterized curcuminoid-containing turmeric extracts in the prevention or treatment of arthritis using streptococcal cell wall (SCW)-induced arthritis, a well-described animal model of rheumatoid arthritis (RA). Arthritic index, a clinical measure of joint swelling, was used as the primary endpoint for assessing the effect of extracts on joint inflammation. An essential oil-depleted turmeric fraction containing 41% of the three major curcuminoids was efficacious in preventing joint inflammation when treatment was started before, but not after, the onset of joint inflammation. A commercial sample containing 94% of the three major curcuminoids was more potent in preventing arthritis than the essential oil-depleted turmeric fraction when compared by total curcuminoid dose per body weight. In conclusion, these data (1) document the in vivo antiarthritic efficacy of an essential oil-depleted turmeric fraction and (2) suggest that the three major curcuminoids are responsible for this antiarthritic effect, while the remaining compounds in the crude turmeric extract may inhibit this protective effect.
A puzzling observation is why peripheral nerve injury results in chronic pain in some, but not all, patients. We explored potential mechanisms that may prevent the expression of chronic pain. Sprague-Dawley (SD) or Holtzman (HZ) rats showed no differences in baseline sensory thresholds or responses to inflammatory stimuli. However, spinal nerve ligation (SNL)-induced tactile allodynia occurred in approximately 85% of SD and 50% of HZ rats, respectively. No apparent differences were observed in a survey of DRG or spinal “neuropathic markers” following SNL regardless of allodynic phenotype. SNL-induced allodynia was reversed by administration of lidocaine within the rostral ventromedial medulla (RVM), a site that integrates descending pain modulation via pain inhibitory (i.e., OFF) and excitatory (i.e., ON) cells. However, in SD or HZ rats with SNL but without allodynia, RVM lidocaine precipitated allodynia. Additionally, RVM lidocaine produced conditioned place preference in allodynic SD or HZ rats but conditioned place aversion in non-allodynic HZ rats. Similarly, RVM U69,593 (kappa opioid agonist) or blockade of spinal α2 adrenergic receptors precipitated allodynia in previously non-allodynic HZ rats with SNL. All rats showed an equivalent first phase formalin responses. However, HZ rats had reduced second phase formalin behaviors along with fewer RVM OFF cell pauses and RVM ON cell bursts. Thus, expression of nerve-injury induced pain may ultimately depend on descending modulation. Engagement of descending inhibition protects in the transition from acute to chronic pain. These unexpected findings might provide a mechanistic explanation for medications that engage descending inhibition or mimic its consequences.
Objective. Scientific evidence is lacking for the antiarthritic efficacy of turmeric dietary supplements that are being promoted for arthritis treatment. Therefore, we undertook studies to determine the antiarthritic efficacy and mechanism of action of a well-characterized turmeric extract using an animal model of rheumatoid arthritis (RA).Methods. The composition of commercial turmeric dietary supplements was determined by highperformance liquid chromatography. A curcuminoidcontaining turmeric extract similar in composition to these supplements was isolated and administered intraperitoneally to female Lewis rats prior to or after the onset of streptococcal cell wall-induced arthritis. Efficacy in preventing joint swelling and destruction was determined clinically, histologically, and by measurement of bone mineral density. Mechanism of action was elucidated by analysis of turmeric's effect on articular transcription factor activation, microarray analysis of articular gene expression, and verification of the physiologic effects of alterations in gene expression. Results.A turmeric fraction depleted of essential oils profoundly inhibited joint inflammation and periarticular joint destruction in a dose-dependent manner. In vivo treatment prevented local activation of NF-B and the subsequent expression of NF-B-regulated genes mediating joint inflammation and destruction, including chemokines, cyclooxygenase 2, and RANKL. Consistent with these findings, inflammatory cell influx, joint levels of prostaglandin E 2 , and periarticular osteoclast formation were inhibited by turmeric extract treatment.Conclusion. These translational studies demonstrate in vivo efficacy and identify a mechanism of action for a well-characterized turmeric extract that supports further clinical evaluation of turmeric dietary supplements in the treatment of RA.The use of botanical remedies for arthritis treatment is promoted in the US by the lay press and high-profile medical practitioners (1,2). Interest in the use of nonpharmaceutical arthritis treatments has grown with the withdrawal of Food and Drug Administrationapproved antiinflammatory drugs (3). However, scientific data are almost uniformly lacking concerning the antiarthritic efficacy and mechanism of action of popular botanical remedies (4,5). The rational medicinal use of botanical dietary supplements is further complicated by the fact that the composition of over-the-counter botanical dietary supplements is not strictly regulated (4,5). Unfortunately, in the medical literature, the chemical composition and biologic activity of botanicals that are tested for antiarthritic efficacy are frequently also not well characterized (6-9). Therefore, benchmarks are lacking for assessing the potential suitability of commercially available botanical supplements or phytomedicines. 3452Turmeric is one such botanical supplement whose use against arthritis, supported almost exclusively by its traditional, centuries-old use as an antiinflammatory agent in Ayurvedic medicine, has been heavily prom...
Background Acute and persistent post-traumatic headache are often debilitating consequences of traumatic brain injury. Underlying physiological mechanisms of post-traumatic headache and its persistence remain unknown, and there are currently no approved therapies for these conditions. Post-traumatic headache often presents with a migraine-like phenotype. As calcitonin-gene related peptide promotes migraine headache, we explored the efficacy and timing of intervention with an anti- calcitonin-gene related peptide monoclonal antibody in novel preclinical models of acute post-traumatic headache and persistent post-traumatic headache following a mild traumatic brain injury event in mice. Methods Male, C57Bl/6 J mice received a sham procedure or mild traumatic brain injury resulting from a weight drop that allowed free head rotation while under minimal anesthesia. Periorbital and hindpaw tactile stimulation were used to assess mild traumatic brain injury-induced cutaneous allodynia. Two weeks after the injury, mice were challenged with stress, a common aggravator of migraine and post-traumatic headache, by exposure to bright lights (i.e. bright light stress) and cutaneous allodynia was measured hourly for 5 hours. A murine anti- calcitonin-gene related peptide monoclonal antibody was administered after mild traumatic brain injury at different time points to allow evaluation of the consequences of either early and sustained calcitonin-gene related peptide sequestration or late administration only prior to bright light stress. Results Mice with mild traumatic brain injury, but not a sham procedure, exhibited both periorbital and hindpaw cutaneous allodynia that resolved by post-injury day 13. Following resolution of injury-induced cutaneous allodynia, exposure to bright light stress re-instated periorbital and hindpaw cutaneous allodynia in injured, but not sham mice. Repeated administration of anti-calcitonin-gene related peptide monoclonal antibody at 2 hours, 7 and 14 days post mild traumatic brain injury significantly attenuated the expression of cutaneous allodynia when evaluated over the 14-day post injury time course and also prevented bright light stress-induced cutaneous allodynia in injured mice. Administration of anti-calcitonin-gene related peptide monoclonal antibody only at 2 hours and 7 days after mild traumatic brain injury blocked injury-induced cutaneous allodynia and partially prevented bright light stress-induced cutaneous allodynia. A single administration of anti-calcitonin-gene related peptide monoclonal antibody after the resolution of the peak injury-induced cutaneous allodynia, but prior to bright light stress challenge, did not prevent bright light stress-induced cutaneous allodynia. Conclusions We used a clinically relevant mild traumatic brain injury event in mice along with a provocative stimulus as novel models of acute post-traumatic headache and persistent post-traumatic headache. Following mild traumatic brain injury, mice demonstrated transient periorbital and hindpaw cutaneous allodynia suggestive of post-traumatic headache-related pain and establishment of central sensitization. Following resolution of injury-induced cutaneous allodynia, exposure to bright light stress re-established cutaneous allodynia, suggestive of persistent post-traumatic headache-related pain. Continuous early sequestration of calcitonin-gene related peptide prevented both acute post-traumatic headache and persistent post-traumatic headache. In contrast, delayed anti-calcitonin-gene related peptide monoclonal antibody treatment following establishment of central sensitization was ineffective in preventing persistent post-traumatic headache. These observations suggest that mechanisms involving calcitonin-gene related peptide underlie the expression of acute post-traumatic headache, and drive the development of central sensitization, increasing vulnerability to headache triggers and promoting persistent post-traumatic headache. Early and continuous calcitonin-gene related peptide blockade following mild traumatic brain injury may represent a viable treatment option for post-traumatic headache and for the prevention of post-traumatic headache persistence. Abbreviations CA Cutaneous allodynia CGRP Calcitonin gene-related peptide mTBI Mild traumatic brain injury PTH Post-traumatic headache APTH Acute post-traumatic headache PPTH Persistent post-traumatic headache
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.