More than 125 million people wear contact lenses worldwide, and contact lens use is the single greatest risk factor for developing microbial keratitis. We tested the antibacterial activity of multipurpose contact lens solutions and their individual component preservatives against the two most common pathogens causing bacterial keratitis, Pseudomonas aeruginosa and Staphylococcus aureus. The in vitro antibacterial activity of five multipurpose contact lens solutions (Opti-Free GP, Boston Simplus, Boston Advance, Menicare GP, and Lobob) was assayed by the standard broth dilution method. Synergy between the preservative components found in the top performing solutions was assayed using checkerboard and time-kill assays. The ISO 14729 criteria and the standard broth dilution method were used to define an optimized contact lens solution formulation against a clinical panel of drug-susceptible and drug-resistant P. aeruginosa and S. aureus strains. Preservatives with the biguanide function group, chlorhexidine and polyaminopropylbiguanide (PAPB), had the best antistaphylococcal activity, while EDTA was the best antipseudomonal preservative. The combination of chlorhexidine and EDTA had excellent synergy against P. aeruginosa. A solution formulation containing chlorhexidine (30 ppm), PAPB (5 ppm), and EDTA (5,000 ppm) had three to seven times more antipseudomonal activity than anything available to consumers today. A multipurpose contact lens solution containing a combination of chlorhexidine, PAPB, and EDTA could help to reduce the incidence of microbial keratitis for contact lens users worldwide.
Despite the broad clinical usage of microbial secondary metabolites with antibiotic activity, little is known about their role in natural microbiomes. Here, we studied the effect of production of the antibiotic tropodithietic acid (TDA) on the producing strain,
Phaeobacter piscinae
S26, a member of the
Roseobacter
group.
We evaluated the ability of a novel lithium niobate (LN) thickness-mode device to atomize disinfectants and reduce microbial burden on model surface materials. A small-scale plastic model housed the LN thickness-mode device and circular coupon surface materials including polycarbonate, polyethylene terephthalate, stainless steel, borosilicate glass, and natural rubber. Coupon surfaces were coated with methicillin-resistant Staphylococcus aureus (MRSA) or multidrug-resistant (MDR) strains of Gram-negative bacterial pathogens (Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii), atomized with disinfectant solutions of varying viscosity (including 10% bleach, 70% ethanol (EtOH), or 25% triethylene glycol (TEG)) using the LN thickness-mode device, and assessed for surviving bacteria. The LN thickness-mode device effectively atomized disinfectants ranging from low viscosity 10% bleach solution or 70% EtOH to highly viscous 25% TEG. Coupons harboring MDR bacteria and atomized with 10% bleach solution or 70% EtOH were effectively decontaminated with ~ 100% bacterial elimination. Atomized 25% TEG effectively eliminated 100% of K. pneumoniae (CRE) from contaminated coupon surfaces but not MRSA. The enclosed small-scale plastic model established proof-of-principle that the LN thickness-mode device could atomize disinfectants of varying viscosities and decontaminate coupon surface materials harboring MDR organisms. Future studies evaluating scaled devices for patient rooms are warranted to determine their utility in hospital environmental decontamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.