At many bank filtration (BF) sites, mixing ratios between the contributing sources of water are typically regarded as values with no temporal variation, even though hydraulic conditions and pumping regimes can be transient. This study illustrates how anthropic and meteorological forcings influence the origin of the water of a BF system that interacts with two lakes (named A and B). The development of a time-varying binary mixing model based on electrical conductivity (EC) allowed the estimation of mixing ratios over a year. A sensitivity analysis quantified the importance of considering the temporal variability of the end-members for reliable results. The model revealed that the contribution from Lake A may vary from 0% to 100%. At the wells that were operated continuously at >1000 m3/day, the contribution from Lake A stabilized between 54% and 78%. On the other hand, intermittent and occasional pumping regimes caused the mixing ratios to be controlled by indirect anthropic and/or meteorological forcing. The flow conditions have implications for the quality of the bank filtrate, as highlighted via the spatiotemporal variability of total Fe and Mn concentrations. We therefore propose guidelines for rapid decision-making regarding the origin and quality of the pumped drinking water.
Abstract. Isotope mass balance models have undergone significant developments in the last decade, demonstrating their utility for assessing the spatial and temporal variability in hydrological processes and revealing significant value for baseline assessment in remote and/or flood-affected settings where direct measurement of surface water fluxes to lakes (i.e. stream gauging) are difficult to perform. In this study, we demonstrate that isotopic mass balance modelling can be used to provide evidence of the relative importance of direct floodwater inputs and temporary subsurface storage of floodwater at ungauged lake systems. A volume-dependent transient isotopic mass balance model was developed for an artificial lake (named lake A) in southern Quebec (Canada). This lake typically receives substantial floodwater inputs during the spring freshet period as an ephemeral hydraulic connection with a 150 000 km2 large watershed is established. First-order water flux estimates to lake A allow for impacts of floodwater inputs to be highlighted within the annual water budget. The isotopic mass balance model has revealed that groundwater and surface water inputs account for 60 %–71 % and 39 %–28 % of the total annual water inputs to lake A, respectively, which demonstrates an inherent dependence of the lake on groundwater. However, when considering the
potential temporary subsurface storage of floodwater, the partitioning between groundwater and surface water inputs tends to equalize, and the lake A
water budget is found to be more resilient to groundwater quantity and
quality changes. Our findings suggest not only that floodwater fluxes to
lake A have an impact on its dynamics during springtime but also significantly
influence its long-term water balance and help to inform, understand, and
predict future water quality variations. From a global perspective, this
knowledge is useful for establishing regional-scale management strategies
for maintaining water quality at flood-affected lakes, for predicting the
response of artificial recharge systems in such settings, and for mitigating impacts due to land use and climate changes.
Due to the abundance of surface water in the province of Quebec, Canada, it is suspected that many groundwater wells are pumping a mixture of groundwater and surface water via induced bank filtration (IBF). The regulatory framework in Quebec provides comprehensive guidelines for the development and monitoring of surface water and groundwater drinking water production systems. However, the regulations do not specifically address hybrid groundwater-surface water production systems such as IBF sites. More knowledge on the use of IBF in the province is needed to adjust the regulations with respect to the particularities of these systems. In order to provide a first evaluation of municipal wells potentially using IBF and the corresponding population served by these wells, a Geographic Information Science framework (GISc) was used to implement an IBF spatial database and calculate the distance from each well to the nearest surface water body. GISc is based on open source GIS programs and openly available data, to facilitate the reproducibility of the work. From this provincial scale approach, we show that nearly one million people are supplied by groundwater from municipal wells located <500 m from a surface water body, and half a million have a significant probability to be supplied by IBF wells. A more focused look at the watershed scale distribution of wells allows us to improve our interpretations by considering the aquifer type and other regional factors. This approach reveals strong spatial variability in the distribution of wells in proximity to surface water. Of the three selected regions, one has a high potential for IBF (Laurentides), one requires additional information do draw precise conclusions (Nicolet), and the third region (Vaudreuil-Soulanges) is unlikely to have widespread use of IBF. With this study, we demonstrate that extensive use of IBF is likely and that there is a need for improved understanding and management of these sites in order to properly protect the drinking water supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.