Effector T cell migration through tissues can enable control of infection or mediate inflammatory damage. Nevertheless, the molecular mechanisms that regulate migration of effector T cells within the interstitial space of inflamed lungs are incompletely understood. Here, we show T cell migration in a mouse model of acute lung injury with two-photon imaging of intact lung tissue. Computational analysis indicates that T cells migrate with an intermittent mode, switching between confined and almost straight migration, guided by lung-associated vasculature. Rho-associated protein kinase (ROCK) is required for both high-speed migration and straight motion. By contrast, inhibition of Gαi signaling with pertussis toxin affects speed but not the intermittent migration of lung-infiltrating T cells. Computational modeling shows that an intermittent migration pattern balances both search area and the duration of contacts between T cells and target cells. These data identify that ROCK-dependent intermittent T cell migration regulates tissue-sampling during acute lung injury.
T cells play a vital role in eliminating pathogenic infections. To activate, naïve T cells search lymph nodes (LNs) for dendritic cells (DCs). Positioning and movement of T cells in LNs is influenced by chemokines including CCL21 as well as multiple cell types and structures in the LNs. Previous studies have suggested that T cell positioning facilitates DC colocalization leading to T:DC interaction. Despite the influence chemical signals, cells, and structures can have on naïve T cell positioning, relatively few studies have used quantitative measures to directly compare T cell interactions with key cell types. Here, we use Pearson correlation coefficient (PCC) and normalized mutual information (NMI) to quantify the extent to which naïve T cells spatially associate with DCs, fibroblastic reticular cells (FRCs), and blood vessels in LNs. We measure spatial associations in physiologically relevant regions. We find that T cells are more spatially associated with FRCs than with their ultimate targets, DCs. We also investigated the role of a key motility chemokine receptor, CCR7, on T cell colocalization with DCs. We find that CCR7 deficiency does not decrease naïve T cell association with DCs, in fact, CCR7−/− T cells show slightly higher DC association compared with wild type T cells. By revealing these associations, we gain insights into factors that drive T cell localization, potentially affecting the timing of productive T:DC interactions and T cell activation.
Numerous host factors of SARS-CoV-2 have been identified by screening approaches, but delineating their molecular roles during infection and whether they can be targeted for antiviral intervention remains a challenge. Here we use Perturb-seq, a single-cell CRISPR screening approach, to investigate how CRISPR interference of host factors changes the course of SARS-CoV-2 infection and the host response in human lung epithelial cells. Our data reveal two classes of host factors with pronounced phenotypes: factors required for the response to interferon and factors required for entry or early infection. Among the latter, we have characterized the NF-κB inhibitor IκBα (NFKBIA), as well as the translation factors EIF4E2 and EIF4H as strong host dependency factors acting early in infection. Overall, our study provides high-throughput functional validation of host factors of SARS-CoV-2 and describes their roles during viral infection in both infected and bystander cells.
The spatial and angular organization of biological macromolecules is a key determinant, as well as informative readout, of their function. Correlative imaging of the dynamic spatio-angular architecture of cells and organelles is valuable, but remains challenging with current methods. Correlative imaging of spatio-angular dynamics requires fast polarization-, depth-, and wavelength-diverse measurement of intrinsic optical properties and fluorescent labels. We report a multimodal instant polarization microscope (miPolScope) that combines a broadband polarization-resolved detector, automation, and reconstruction algorithms to enable label-free imaging of phase, retardance, and orientation, multiplexed with fluorescence imaging of concentration, anisotropy, and orientation of molecules at diffraction-limited resolution and high speed. miPolScope enabled multimodal imaging of myofibril architecture and contractile activity of beating cardiomyocytes, cell and organelle architecture of live HEK293T and U2OS cells, and density and anisotropy of white and grey matter of mouse brain tissue across the visible spectrum. We anticipate these developments in joint quantitative imaging of density and anisotropy to enable new studies in tissue pathology, mechanobiology, and imaging-based screens.
Intestinal myeloid cells play a critical role in balancing intestinal homeostasis and inflammation. Here, we report that expression of the autophagy related 5 (Atg5) protein in myeloid cells prevents dysbiosis and excessive intestinal inflammation by limiting IL-12 production. Mice with a selective genetic deletion of Atg5 in myeloid cells (Atg5ΔMye) showed signs of dysbiosis prior to colitis and exhibited severe intestinal inflammation upon colitis induction that was characterized by increased IFNγ production. The exacerbated colitis was linked to excess IL-12 secretion from Atg5-deficient myeloid cells and gut dysbiosis. Restoration of the intestinal microbiota or genetic deletion of IL-12 in Atg5ΔMye mice attenuated the intestinal inflammation in Atg5ΔMye mice. Additionally, Atg5 functions to limit IL-12 secretion through modulation of late endosome (LE) acidity. Lastly, the autophagy cargo receptor NBR1, which accumulates in Atg5-deficient cells, played a role by delivering IL-12 to LE. In summary, Atg5 expression in intestinal myeloid cells acts as an anti-inflammatory brake to regulate IL-12 thus preventing dysbiosis and uncontrolled IFNγ-driven intestinal inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.