The promoter of the human adenovirus type 2 IVa(2) gene, which becomes active only during the late phase of infection, is built largely from sequences spanning, and downstream of, the sites of initiation of transcription. These sequences comprise an initiator, an intragenic sequence necessary for efficient transcription from the promoter by RNA polymerase II, and an intragenic binding site for a cellular repressor of IVa(2) transcription. The properties of the latter protein, which is termed IVa(2)-RF, suggested that it might account for the viral DNA synthesis-dependent activation of IVa(2) transcription during the adenoviral productive cycle. Here we report the results of experiments to assess the contributions of DNA template concentration and IVa(2)-RF binding to the activity of the IVa(2) promoter using a transient expression system. When a IVa(2)-EGFP reporter gene was introduced into HeLa cells, in which IVa(2)-RF was identified, no EFGP synthesis could be detected. In contrast, in IVa(2)-RF-containing cells in which the plasmid carrying the chimeric gene replicated, synthesis of both the EGFP protein and the IVa(2)-EGFP mRNA was readily detected. A vector mutation that blocked plasmid replication reduced IVa(2) promoter activity to undetectable levels. In contrast, a IVa(2) promoter substitution that impaired binding of IVa(2)-RF increased IVa(2) promoter activity under all conditions examined. Furthermore, introduction of DNA containing the IV-RF binding site with the chimeric reporter genes resulted in increased transcription from the IVa(2) promoter in the absence of plasmid replication. These properties are consistent with the hypothesis that the relative concentration of the IVa(2) promoter and of the cellular repressor that binds to it governs transcription from this adenoviral promoter.
Detailed studies of modern large-scale wind turbines represent a significant challenge. The immense length scales characteristic of these machines, in combination with rotational effects, render numerical simulations and conventional wind tunnel tests unfeasible. Field experiments can give us important insight into the aerodynamics and operation, but they are always accompanied by large amounts of uncertainty, due to the changing nature of the inflow and the lack of accurate control of the test conditions. Here, a series of experiments is presented, using an alternative method that enables us to represent and study much of the physics governing the large-scale wind turbines in small-scale models. A specialized, compressed-air wind tunnel is used to achieve dynamic similarity with the field-scale, but under accurately controlled conditions of the laboratory. Power and thrust coefficients are investigated as a function of the Reynolds number up to Re D = 14 × 10 6 , at tip speed ratios representative of those typical in the field. A strong Reynolds number dependence is observed in the power coefficient, even at very high Reynolds numbers (well exceeding those occurring in most laboratory studies). We show that for an untripped rotor, the performance reaches a Reynolds number invariant state at Re c 3.5 × 10 6 , regardless of the tip speed ratio. The same model was also tested with scaled tripping devices, with a height of only 9 μm, to study the effect of transition on the rotor performance. In the tripped case, the Reynolds number dependence was eliminated for all tested cases, suggesting that the state of the boundary layer is critical for correct predictions of rotor performance.
The transient pressure field around a moderately thick airfoil is studied as it undergoes ramp-type pitching motions at high Reynolds numbers and low Mach numbers. A unique set of laboratory experiments were performed in a high-pressure wind tunnel to investigate dynamic stall at chord Reynolds numbers in the range of $0.5\times 10^6\leq Re _c\leq 5.5\times 10^6$ in the absence of compressibility effects. In addition to variations of mean angle and amplitude, pitching manoeuvres at reduced frequencies in the range of $0.01\leq k\leq 0.40$ were studied by means of surface-pressure measurements. Independently of the parameter variations, all test cases exhibit a nearly identical stall behaviour characterized by a gradual trailing-edge stall, in which the dynamic stall vortex forms approximately at mid-chord. The location of the pitching window with respect to the Reynolds-number-dependent static stall angle is found to define the temporal development of the stall process. The time until stall onset is characterized by a power law, where a small excess of the static stall angle results in a drastically prolonged stall delay. The reduced frequency exhibits a decrease in impact on the stall development in the case of angle-limited pitching manoeuvres. Beyond a critical reduced frequency, both load magnitudes and vortex evolution become reduced frequency independent and instead depend on the geometry of the motion and the convective time scale, respectively. Overall, the characteristics of vortex evolution induced by dynamic stall show remarkable similarities to the framework of optimal vortex formation reported in Gharib et al. (J. Fluid Mech., vol. 360, 1998, pp. 121–140). The data from this study are publicly available at https://doi.org/10.34770/b3vq-sw14.
Unsteady airfoil experiments were conducted in a high-pressure wind tunnel at chord Reynolds numbers of Rec = 3.0 × 106. A moderately thick NACA0021 airfoil was pitched from rest beyond the static stall angle in six individual ramp tests with increasing and decreasing angles of attack. The variant types of motion of the pitching maneuvers were characterized by constant angular velocity, angular acceleration and angular jerk, respectively. The ramp-up experiments revealed a substantial and time-dependent excess of the aerodynamic forces from static values in all three test cases and exhibited a distinct time delay as a consequence of the variant motion types. Similarly, the ramp-down experiments were largely impacted by the progression of the pitching motion, resulting in pronounced differences in the temporal development of lift and drag. Results are shown as time series of integrated forces and surface pressure distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.