SummaryBackgroundThe emergence of Neisseria gonorrhoeae with decreased susceptibility to extended spectrum cephalosporins raises the prospect of untreatable gonorrhoea. In the absence of new treatments, efforts to slow the increasing incidence of resistant gonococcus require insight into the factors that contribute to its emergence and spread. We assessed the relatedness between isolates in the USA and reconstructed likely spread of lineages through different sexual networks.MethodsWe sequenced the genomes of 236 isolates of N gonorrhoeae collected by the Centers for Disease Control and Prevention's Gonococcal Isolate Surveillance Project (GISP) from sentinel public sexually transmitted disease clinics in the USA, including 118 (97%) of the isolates from 2009–10 in GISP with reduced susceptibility to cefixime (cefRS) and 118 cefixime-susceptible isolates from GISP matched as closely as possible by location, collection date, and sexual orientation. We assessed the association between antimicrobial resistance genotype and phenotype and correlated phylogenetic clustering with location and sexual orientation.FindingsMosaic penA XXXIV had a high positive predictive value for cefRS. We found that two of the 118 cefRS isolates lacked a mosaic penA allele, and rechecking showed that these two were susceptible to cefixime. Of the 116 remaining cefRS isolates, 114 (98%) fell into two distinct lineages that have independently acquired mosaic penA allele XXXIV. A major lineage of cefRS strains spread eastward, predominantly through a sexual network of men who have sex with men. Eight of nine inferred transitions between sexual networks were introductions from men who have sex with men into the heterosexual population.InterpretationGenomic methods might aid efforts to slow the spread of antibiotic-resistant N gonorrhoeae through augmentation of gonococcal outbreak surveillance and identification of populations that could benefit from increased screening for aymptomatic infections.FundingAmerican Sexually Transmitted Disease Association, Wellcome Trust, National Institute of General Medical Sciences, and National Institute of Allergy and Infectious Diseases, National Institutes of Health.
During the last 2 decades, community-associated methicillinresistant Staphylococcus aureus (CA-MRSA) strains have dramatically increased the global burden of S. aureus infections. The pandemic sequence type (ST)8/pulsed-field gel type USA300 is the dominant CA-MRSA clone in the United States, but its evolutionary history and basis for biological success are incompletely understood. Here, we use whole-genome sequencing of 387 ST8 isolates drawn from an epidemiological network of CA-MRSA infections and colonizations in northern Manhattan to explore short-term evolution and transmission patterns. Phylogenetic analysis predicted that USA300 diverged from a most common recent ancestor around 1993. We found evidence for multiple introductions of USA300 and reconstructed the phylogeographic spread of isolates across neighborhoods. Using pair-wise single-nucleotide polymorphism distances as a measure of genetic relatedness between isolates, we observed that most USA300 isolates had become endemic in households, indicating their critical role as reservoirs for transmission and diversification. Using the maximum single-nucleotide polymorphism variability of isolates from within households as a threshold, we identified several possible transmission networks beyond households. Our study also revealed the evolution of a fluoroquinolone-resistant subpopulation in the mid-1990s and its subsequent expansion at a time of high-frequency outpatient antibiotic use. This high-resolution phylogenetic analysis of ST8 has documented the genomic changes associated with USA300 evolution and how some of its recent evolution has been shaped by antibiotic use. By integrating whole-genome sequencing with detailed epidemiological analyses, our study provides an important framework for delineating the full diversity and spread of USA300 and other emerging pathogens in large urban community populations.phylogeny | genomics | CC8 | drug resistance
The implementation of routine whole-genome sequencing (WGS) promises to transform our ability to monitor the emergence and spread of bacterial pathogens. Here we combined WGS data from 308 invasive Staphylococcus aureus isolates corresponding to a pan-European population snapshot, with epidemiological and resistance data. Geospatial visualization of the data is made possible by a generic software tool designed for public health purposes that is available at the project URL (http://www.microreact.org/project/EkUvg9uY?tt=rc). Our analysis demonstrates that high-risk clones can be identified on the basis of population level properties such as clonal relatedness, abundance, and spatial structuring and by inferring virulence and resistance properties on the basis of gene content. We also show that in silico predictions of antibiotic resistance profiles are at least as reliable as phenotypic testing. We argue that this work provides a comprehensive road map illustrating the three vital components for future molecular epidemiological surveillance: (i) large-scale structured surveys, (ii) WGS, and (iii) community-oriented database infrastructure and analysis tools.
Due to the lack of fossil evidence, the timescales of bacterial evolution are largely unknown. The speed with which genetic change accumulates in populations of pathogenic bacteria, however, is a key parameter that is crucial for understanding the emergence of traits such as increased virulence or antibiotic resistance, together with the forces driving pathogen spread. Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of hospital-acquired infections. We have investigated an MRSA strain (ST225) that is highly prevalent in hospitals in Central Europe. By using mutation discovery at 269 genetic loci (118,804 basepairs) within an international isolate collection, we ascertained extremely low diversity among European ST225 isolates, indicating that a recent population bottleneck had preceded the expansion of this clone. In contrast, US isolates were more divergent, suggesting they represent the ancestral population. While diversity was low, however, our results demonstrate that the short-term evolutionary rate in this natural population of MRSA resulted in the accumulation of measurable DNA sequence variation within two decades, which we could exploit to reconstruct its recent demographic history and the spatiotemporal dynamics of spread. By applying Bayesian coalescent methods on DNA sequences serially sampled through time, we estimated that ST225 had diverged since approximately 1990 (1987 to 1994), and that expansion of the European clade began in 1995 (1991 to 1999), several years before the new clone was recognized. Demographic analysis based on DNA sequence variation indicated a sharp increase of bacterial population size from 2001 to 2004, which is concordant with the reported prevalence of this strain in several European countries. A detailed ancestry-based reconstruction of the spatiotemporal dispersal dynamics suggested a pattern of frequent transmission of the ST225 clone among hospitals within Central Europe. In addition, comparative genomics indicated complex bacteriophage dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.